kLogNLP: Graph Kernel-based Relational Learning of Natural Language

被引:0
|
作者
Verbeke, Mathias [1 ]
Frasconi, Paolo [2 ]
De Grave, Kurt [1 ]
Costa, Fabrizio [3 ]
De Raedt, Luc [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] Univ Firenze, Dipartimento Sistemi & Informat, Florence, Italy
[3] Albert Ludwigs Univ, Inst Informat, Freiburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
kLog is a framework for kernel-based learning that has already proven successful in solving a number of relational tasks in natural language processing. In this paper, we present kLogNLP, a natural language processing module for kLog. This module enriches kLog with NLP-specific preprocessors, enabling the use of existing libraries and toolkits within an elegant and powerful declarative machine learning framework. The resulting relational model of the domain can be extended by specifying additional relational features in a declarative way using a logic programming language. This declarative approach offers a flexible way of experimentation and a way to insert domain knowledge.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [21] Practical Kernel-Based Reinforcement Learning
    Barreto, Andre M. S.
    Precup, Doina
    Pineau, Joelle
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [22] Bounded Kernel-Based Online Learning
    Orabona, Francesco
    Keshet, Joseph
    Caputo, Barbara
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2009, 10 : 2643 - 2666
  • [23] Coupled kernel-based subspace learning
    Yan, SC
    Xu, D
    Zhang, L
    Zhang, BY
    Zhang, HJ
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 645 - 650
  • [24] Kernel-based learning of orthogonal functions
    Scampicchio, Anna
    Bisiacco, Mauro
    Pillonetto, Gianluigi
    [J]. NEUROCOMPUTING, 2023, 545
  • [25] Gaussian Process with Graph Convolutional Kernel for Relational Learning
    Fang, Jinyuan
    Liang, Shangsong
    Meng, Zaiqiao
    Zhang, Qiang
    [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 353 - 363
  • [26] Recommendation as link prediction in bipartite graphs: A graph kernel-based machine learning approach
    Li, Xin
    Chen, Hsinchun
    [J]. DECISION SUPPORT SYSTEMS, 2013, 54 (02) : 880 - 890
  • [27] Graph kernel-based learning for gene function prediction from gene interaction network
    Li, Xin
    Zhang, Zhu
    Chen, Hsinchun
    Li, Jiexun
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, PROCEEDINGS, 2007, : 368 - +
  • [28] SEMI-PARAMETRIC GRAPH KERNEL-BASED RECONSTRUCTION
    Ioannidis, Vassilis N.
    Nikolakopoulos, Athanasios N.
    Giannakis, Georgios B.
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 588 - 592
  • [29] Learning rates for kernel-based expectile regression
    Farooq, Muhammad
    Steinwart, Ingo
    [J]. MACHINE LEARNING, 2019, 108 (02) : 203 - 227
  • [30] Preimage Problem in Kernel-Based Machine Learning
    Honeine, Paul
    Richard, Cedric
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) : 77 - 88