Preparation of Silicon Nanostructures for Lithium Ion Battery Anodes

被引:2
|
作者
Mokkelbost, T. [1 ]
Fossdal, A. [1 ]
Dahl, O. [1 ]
Martinez, A. M. [1 ]
Sheridan, E. [1 ]
Thomassen, M. S. [1 ]
Vullum, P. E. [1 ]
Rodahl, S. [1 ]
Svensson, A. M. [1 ]
机构
[1] SINTEF Mat & Chem, N-7465 Trondheim, Norway
关键词
NANOWIRES; DEPOSITION; GROWTH; LIQUID; NUCLEATION;
D O I
10.1149/1.3654213
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One important challenge, among several others, in using silicon nanostructures as anodes in lithium ion batteries concerns finding cost effective fabrication routes for their connection to a suitable current collector. Here we present synthesis and characterization of silicon nanostructures by plasma enhanced chemical vapor deposition and template assisted electrodeposition on conducting substrates. The two methods give materials with different morphologies. Silicon nanowires were grown by chemical vapor deposition utilizing the gold catalyzed vapor-liquid-solid growth mechanism. A decrease in the nucleation time for silicon wire growth on stainless steel and aluminum substrates was observed with increasing growth temperature and SiH4 pressure. The utilization of plasma enhancement resulted in the formation of silicon thin films. Copper substrates, without diffusion barrier, were found to be unsuitable for gold catalyzed vapor-liquid-solid growth. Silicon films and dots were deposited on copper and copper/gold substrates by template assisted electrochemical deposition in ionic liquids.
引用
收藏
页码:149 / 158
页数:10
相关论文
共 50 条
  • [41] Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands
    Cho, Jeong-Hyun
    Picraux, S. Tom
    [J]. NANO LETTERS, 2013, 13 (11) : 5740 - 5747
  • [42] Alloy design for lithium-ion battery anodes
    Obrovac, M. N.
    Christensen, Leif
    Le, Dinh Ba
    Dahnb, J. R.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (09) : A849 - A855
  • [43] Carbonaceous materials for lithium ion secondary battery anodes
    Nishi, Y
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2000, 340 : 419 - 424
  • [44] Applications of Carbon Nanotubes for Lithium Ion Battery Anodes
    Xiong, Zhili
    Yun, Young Soo
    Jin, Hyoung-Joon
    [J]. MATERIALS, 2013, 6 (03): : 1138 - 1158
  • [45] Electrochemical stiffness in lithium ion battery anodes and cathodes
    Gewirth, Andrew
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [46] Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes
    Kim, Nahyeon
    Park, Hyejeong
    Yoon, Naeun
    Lee, Jung Kyoo
    [J]. ACS NANO, 2018, 12 (04) : 3853 - 3864
  • [47] Hierarchical nanostructured silicon-based anodes for lithium-ion battery: Processing and performance
    Jana, M.
    Ning, Tianxiang
    Singh, Raj N.
    [J]. MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2018, 232 : 61 - 67
  • [48] Rice husk-originating silicon–graphite composites for advanced lithium ion battery anodes
    Hye Jin Kim
    Jin Hyeok Choi
    Jang Wook Choi
    [J]. Nano Convergence, 4
  • [49] Spray-pyrolyzed silicon/disordered carbon nanocomposites for lithium-ion battery anodes
    Ng, S. H.
    Wang, J.
    Konstantinov, K.
    Wexler, D.
    Chew, S. Y.
    Guo, Zt.
    Liu, H. K.
    [J]. JOURNAL OF POWER SOURCES, 2007, 174 (02) : 823 - 827
  • [50] An oxidative pretreatment for lithium-ion battery anodes
    Tibbetts, GG
    Nazri, GA
    Howie, BJ
    [J]. PROCEEDINGS OF THE SYMPOSIUM ON LITHIUM POLYMER BATTERIES, 1997, 96 (17): : 243 - 249