Symmetry breaking of periodic orbits in control systems:: A harmonic balance approach

被引:7
|
作者
Aguirre, B [1 ]
Alvarez-Ramírez, J [1 ]
Suárez, R [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, DF, Mexico
来源
关键词
D O I
10.1142/S0218127498001959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with linear control systems subjected to saturated feedback. A first harmonic approach is used to describe the existence of nonsymmetric periodic orbits in a three-dimensional control system. By taking a high-gain parametrization of the feedback control, the presence of nonsymmetric (first harmonic) periodic orbits is demonstrated for certain values of the parameter. Since it is also shown that nonsymmetric periodic orbits do not exist for small and large values of the parameter, evidences are found of the existence of symmetry breaking bifurcations.
引用
收藏
页码:2439 / 2448
页数:10
相关论文
共 50 条
  • [41] Symmetry breaking in dynamical systems
    Lauterbach, R
    NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 121 - 143
  • [42] Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance
    Luo, Albert C. J.
    Huang, Jianzhe
    JOURNAL OF VIBRATION AND CONTROL, 2012, 18 (11) : 1661 - 1674
  • [43] PIECEWISE HARMONIC BALANCE TECHNIQUE FOR DETERMINATION OF PERIODIC RESPONSE OF NONLINEAR-SYSTEMS
    NAKHLA, MS
    VLACH, J
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1976, 23 (02): : 85 - 91
  • [44] Stabilizing unstable periodic orbits of dynamical systems using delayed feedback control with periodic gain
    Leonov G.A.
    Moskvin A.V.
    International Journal of Dynamics and Control, 2018, 6 (2) : 601 - 608
  • [45] A NEW APPROACH IN THE SEARCH FOR PERIODIC ORBITS
    Cobiaga, Romina
    Reartes, Walter
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (11):
  • [46] Symmetry breaking of vortex patterns in a rotating harmonic potential
    Sakaguch, Hidetsugu
    Takeshita, Hironobu
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2008, 77 (05)
  • [47] Perturbative breaking of the pseudospin symmetry in the relativistic harmonic oscillator
    Lisboa, R
    Malheiro, M
    de Castro, AS
    Alberto, P
    Fiolhais, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2004, 13 (07): : 1447 - 1451
  • [48] Periodic orbits and escapes in dynamical systems
    Contopoulos, George
    Harsoula, Mirella
    Lukes-Gerakopoulos, Georgios
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2012, 113 (03): : 255 - 278
  • [49] CONTRACTIBLE PERIODIC ORBITS OF LAGRANGIAN SYSTEMS
    Paternain, Miguel
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (03) : 445 - 453
  • [50] Tunneling in complex systems and periodic orbits
    Ankerhold, J
    ADVANCES IN SOLID STATE PHYSICS 41, 2001, 41 : 433 - 445