Symmetry breaking of periodic orbits in control systems:: A harmonic balance approach

被引:7
|
作者
Aguirre, B [1 ]
Alvarez-Ramírez, J [1 ]
Suárez, R [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, DF, Mexico
来源
关键词
D O I
10.1142/S0218127498001959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with linear control systems subjected to saturated feedback. A first harmonic approach is used to describe the existence of nonsymmetric periodic orbits in a three-dimensional control system. By taking a high-gain parametrization of the feedback control, the presence of nonsymmetric (first harmonic) periodic orbits is demonstrated for certain values of the parameter. Since it is also shown that nonsymmetric periodic orbits do not exist for small and large values of the parameter, evidences are found of the existence of symmetry breaking bifurcations.
引用
收藏
页码:2439 / 2448
页数:10
相关论文
共 50 条
  • [31] Analysis of Periodic Orbits for the Chen and the Lü Systems via a Variational Approach
    Chengwei Dong
    Huihui Liu
    Journal of the Korean Physical Society, 2019, 75 : 188 - 195
  • [32] Analysis of Periodic Orbits for the Chen and the Lu Systems via a Variational Approach
    Dong, Chengwei
    Liu, Huihui
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2019, 75 (03) : 188 - 195
  • [33] General approach to the localization of unstable periodic orbits in chaotic dynamical systems
    Schmelcher, P
    Diakonos, FK
    PHYSICAL REVIEW E, 1998, 57 (03): : 2739 - 2746
  • [34] General approach to the localization of unstable periodic orbits in chaotic dynamical systems
    Universitaet Heidelberg, Heidelberg, Germany
    Phys Rev E., 3 -A (2739-2746):
  • [35] An optimization approach to locating and stabilizing unstable periodic orbits of chaotic systems
    Tian, YP
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (05): : 1163 - 1172
  • [36] Calculation and control of unstable periodic orbits in piecewise smooth dynamical systems
    Ueta, T
    Kawabe, T
    Chen, GR
    Kawakami, H
    CHAOS CONTROL: THEORY AND APPLICATIONS, 2003, 292 : 321 - 340
  • [37] Analysis of periodic operation of bioreactors from a first-harmonic balance approach
    Hernandez-Martinez, Eliseo
    Granados-Focil, Andres
    Meraz, Monica
    Alvarez-Ramirez, Jose
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2011, 50 (11-12) : 1169 - 1176
  • [38] A Novel Rational Harmonic Balance Approach for Periodic Solutions of Conservative Nonlinear Oscillators
    Belendez, A.
    Gimeno, E.
    Alvarez, M. L.
    Gallego, S.
    Ortuno, M.
    Mendez, D. I.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2009, 10 (01) : 13 - 26
  • [39] Harmonic balance approach to periodic solutions of non-linear jerk equations
    Gottlieb, HPW
    JOURNAL OF SOUND AND VIBRATION, 2004, 271 (3-5) : 671 - 683
  • [40] Systems with Symmetry Breaking and Restoration
    Yukalov, Vyacheslav I.
    SYMMETRY-BASEL, 2010, 2 (01): : 40 - 68