Symmetry breaking of periodic orbits in control systems:: A harmonic balance approach

被引:7
|
作者
Aguirre, B [1 ]
Alvarez-Ramírez, J [1 ]
Suárez, R [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Div Ciencias Basicas & Ingn, Mexico City 09340, DF, Mexico
来源
关键词
D O I
10.1142/S0218127498001959
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is concerned with linear control systems subjected to saturated feedback. A first harmonic approach is used to describe the existence of nonsymmetric periodic orbits in a three-dimensional control system. By taking a high-gain parametrization of the feedback control, the presence of nonsymmetric (first harmonic) periodic orbits is demonstrated for certain values of the parameter. Since it is also shown that nonsymmetric periodic orbits do not exist for small and large values of the parameter, evidences are found of the existence of symmetry breaking bifurcations.
引用
收藏
页码:2439 / 2448
页数:10
相关论文
共 50 条
  • [1] Harmonic balance-based approach for optimal time delay to control unstable periodic orbits of chaotic systems
    Y. M. Chen
    Q. X. Liu
    J. K. Liu
    Acta Mechanica Sinica, 2020, 36 : 918 - 925
  • [2] Harmonic balance-based approach for optimal time delay to control unstable periodic orbits of chaotic systems
    Chen, Y. M.
    Liu, Q. X.
    Liu, J. K.
    ACTA MECHANICA SINICA, 2020, 36 (04) : 918 - 925
  • [3] Computation of periodic orbits for piecewise linear oscillator by Harmonic Balance Methods
    Pei, Lijun
    Chong, Antonio S. E.
    Pavlovskaia, Ekaterina
    Wiercigroch, Marian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 108
  • [4] An optimal control approach to the design of periodic orbits for mechanical systems with impacts
    Spedicato, Sara
    Notarstefano, Giuseppe
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2017, 23 : 111 - 121
  • [5] Harmonic balance approach to the periodic solutions of the (an)harmonic relativistic oscillator
    Belendez, Augusto
    Pascual, Carolina
    PHYSICS LETTERS A, 2007, 371 (04) : 291 - 299
  • [6] A Harmonic Balance Approach for Designing Compliant Mechanical Systems with Nonlinear Periodic Motions
    Tang, Pengbin
    Zehnder, Jonas
    Coros, Stelian
    Thomaszewski, Bernhard
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (06):
  • [7] Symmetry breaking by periodic potentials in quantum Hall systems
    Dumoit, J
    Friedman, B
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (21) : 3663 - 3670
  • [8] Spontaneous symmetry breaking in nonlinear binary periodic systems
    Peng, Ruihan
    Fu, Qidong
    Chen, Yejia
    Luo, Weidong
    Huang, Changming
    Ye, Fangwei
    Physical Review A, 2024, 110 (04)
  • [9] Asymmetric balance in symmetry breaking
    Garbin, Bruno
    Fatome, Julien
    Oppo, Gian-Luca
    Erkintalo, Miro
    Murdoch, Stuart G.
    Coen, Stephane
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [10] Automatic control and tracking of periodic orbits in chaotic systems
    Ando, Hiroyasu
    Boccaletti, S.
    Aihara, Kazuyuki
    PHYSICAL REVIEW E, 2007, 75 (06):