Global well-posedness and blow-up criterion for the periodic quasi-geostrophic equations in Lei-Lin-Gevrey spaces

被引:3
|
作者
Benhamed, Moez [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LR03ES04, Tunis 2092, Tunisia
关键词
Blow-up result; Global existence; Lei-Lin-Gevrey spaces; subcritical case; surface quasi-geostrophic equations; ASYMPTOTIC-BEHAVIOR; FLOWS;
D O I
10.1002/mma.4543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a periodic 2-dimensional quasi-geostrophic equations with subcritical dissipation. We show the global existence and uniqueness of the solution theta is an element of C ([0, T], gamma(1-2 alpha)(a,sigma)(T-2)) for small initial data in the Lei-Lin-Gevrey spaces. gamma(1-2 alpha)(a,sigma)(T-2). Moreover, we establish an exponential type explosion in finite time of this solution.
引用
收藏
页码:7488 / 7509
页数:22
相关论文
共 50 条
  • [41] THE LOCAL WELL-POSEDNESS, BLOW-UP AND GLOBAL SOLUTION OF A NEW INTEGRABLE SYSTEM IN BESOV SPACES
    Zheng, Pei
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [42] Well-posedness results and blow-up for a class of semilinear heat equations
    Yen, Dang Van
    Binh, Ho Duy
    Long, Le Dinh
    Van, Ho Thi Kim
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [43] Well-posedness for the 2D dissipative quasi-geostrophic equations in the Besov space
    Zhang, ZF
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (12): : 1646 - 1655
  • [44] Well-posedness results and blow-up for a class of semilinear heat equations
    Dang Van Yen
    Ho Duy Binh
    Le Dinh Long
    Ho Thi Kim Van
    Advances in Difference Equations, 2021
  • [45] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
    Kiselev, A.
    Nazarov, F.
    Volberg, A.
    INVENTIONES MATHEMATICAE, 2007, 167 (03) : 445 - 453
  • [46] Global well-posedness, blow-up phenomenon and ill-posedness for the hyperbolic Keller-Segel equations
    Meng, Zhiying
    Nie, Yao
    Ye, Weikui
    Yin, Zhaoyang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 413 : 828 - 850
  • [47] Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
    A. Kiselev
    F. Nazarov
    A. Volberg
    Inventiones mathematicae, 2007, 167 : 445 - 453
  • [48] Global well-posedness for the 2D critical dissipative quasi-geostrophic equation
    Zhi-fei Zhang
    Science in China Series A: Mathematics, 2007, 50 : 485 - 494
  • [49] Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic equations
    Liu, Yang
    Yu, Tao
    Li, Wenke
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [50] Global well-posedness for the 2D critical dissipative quasi-geostrophic equation
    Zhang, Zhi-fei
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04): : 485 - 494