Well-posedness results and blow-up for a class of semilinear heat equations

被引:0
|
作者
Dang Van Yen
Ho Duy Binh
Le Dinh Long
Ho Thi Kim Van
机构
[1] Ho Chi Minh City University of Technology,Faculty of Information Technology
[2] Thu Dau Mot University,Division of Applied Mathematics
来源
Advances in Difference Equations | / 2021卷
关键词
Nonlinear heat equation; Existence; Blow-up; 35K05; 35K15; 37K40;
D O I
暂无
中图分类号
学科分类号
摘要
This paper considers the initial value problem for nonlinear heat equation in the whole space RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{N}$\end{document}. The local existence theory related to the finite time blow-up is also obtained for the problem with nonlinearity source (like polynomial types).
引用
收藏
相关论文
共 50 条
  • [1] Well-posedness results and blow-up for a class of semilinear heat equations
    Yen, Dang Van
    Binh, Ho Duy
    Long, Le Dinh
    Van, Ho Thi Kim
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [2] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Yong Zhou
    Donal O’Regan
    Mediterranean Journal of Mathematics, 2022, 19
  • [3] On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation
    Vo Van Au
    Zhou, Yong
    O'Regan, Donal
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (01)
  • [4] A NOTE ON GLOBAL WELL-POSEDNESS AND BLOW-UP OF SOME SEMILINEAR EVOLUTION EQUATIONS
    Saanouni, Tarek
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (03): : 355 - 372
  • [5] WELL-POSEDNESS AND BLOW-UP FOR AN IN-HOMOGENEOUS SEMILINEAR PARABOLIC EQUATION
    Majdoub, Mohamed
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2021, 13 (01): : 85 - 100
  • [6] ON THE BLOW-UP RESULTS FOR A CLASS OF STRONGLY PERTURBED SEMILINEAR HEAT EQUATIONS
    Nguyen, Van Tien
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (08) : 3585 - 3626
  • [7] Well-posedness and blow-up criterion for strong solutions of a class of compressible MHD equations
    Meng, Qiu
    Xing, Huifang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (02)
  • [8] Global well-posedness, asymptotic behavior and blow-up of solutions for a class of degenerate parabolic equations
    Liu, Yang
    Yu, Tao
    Li, Wenke
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 196
  • [9] Local well-posedness and blow-up for an inhomogeneous nonlinear heat equation
    Alessa, Rasha
    Alshehri, Aisha
    Altamimi, Haya
    Majdoub, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (08) : 5264 - 5272
  • [10] Well-posedness and blow-up results for a class of nonlinear fractional Rayleigh-Stokes problem
    Wang, Jing Na
    Alsaedi, Ahmed
    Ahmad, Bashir
    Zhou, Yong
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1579 - 1597