Robustness of Autoencoders for Anomaly Detection Under Adversarial Impact

被引:0
|
作者
Goodge, Adam [1 ,3 ]
Hooi, Bryan [1 ,2 ]
Ng, See Kiong [1 ,2 ]
Ng, Wee Siong [3 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore, Singapore
[2] Natl Univ Singapore, Inst Data Sci, Singapore, Singapore
[3] ASTAR, Inst Infocomm Res, Singapore, Singapore
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting anomalies is an important task in a wide variety of applications and domains. Deep learning methods have achieved state-of-the-art performance in anomaly detection in recent years; unsupervised methods being particularly popular. However, deep learning methods can be fragile to small perturbations in the input data. This can be exploited by an adversary to deliberately hinder model performance; an adversarial attack. This phenomena has been widely studied in the context of supervised image classification since its discovery, however such studies for an anomaly detection setting are sorely lacking. Moreover, the plethora of defense mechanisms that have been proposed are often not applicable to unsupervised anomaly detection models. In this work, we study the effect of adversarial attacks on the performance of anomaly-detecting autoencoders using real data from a Cyber physical system (CPS) testbed with intervals of controlled, physical attacks as anomalies. An adversary would attempt to disguise these points as normal through adversarial perturbations. To combat this, we propose the Approximate Projection Autoencoder (APAE), which incorporates two defenses against such attacks into a general autoencoder. One of these involves a novel technique to improve robustness under adversarial impact by optimising latent representations for better reconstruction outputs.
引用
下载
收藏
页码:1244 / 1250
页数:7
相关论文
共 50 条
  • [41] Anomaly Detection for Agricultural Vehicles Using Autoencoders
    Mujkic, Esma
    Philipsen, Mark P.
    Moeslund, Thomas B.
    Christiansen, Martin P.
    Ravn, Ole
    SENSORS, 2022, 22 (10)
  • [42] UAV Fault and Anomaly Detection Using Autoencoders
    Dhakal, Raju
    Bosma, Carly
    Chaudhary, Prachi
    Kandel, Laxima Niure
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [43] Anomaly detection in a forensic timeline with deep autoencoders
    Studiawan, Hudan
    Sohel, Ferdous
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 63
  • [44] Evaluating the impact of generative adversarial models on the performance of anomaly intrusion detection
    Arafah, Mohammad
    Phillips, Iain
    Adnane, Asma
    IET NETWORKS, 2024, 13 (01) : 28 - 44
  • [45] Anomaly Detection with Convolutional Autoencoders for Fingerprint Presentation Attack Detection
    Kolberg J.
    Grimmer M.
    Gomez-Barrero M.
    Busch C.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3 (02): : 190 - 202
  • [46] Generative Probabilistic Novelty Detection with Isometric Adversarial Autoencoders
    Almohsen, Ranya
    Keaton, Matthew R.
    Adjeroh, Donald A.
    Doretto, Gianfranco
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 2002 - 2012
  • [47] Improving Robustness of Intent Detection Under Adversarial Attacks: A Geometric Constraint Perspective
    Qi, Biqing
    Zhou, Bowen
    Zhang, Weinan
    Liu, Jianxing
    Wu, Ligang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (05) : 6322 - 6337
  • [48] Robustness of Image-based Android Malware Detection Under Adversarial Attacks
    Darwaish, Asim
    Nait-Abdesselam, Farid
    Titouna, Chafiq
    Sattar, Sumera
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [49] Exploiting Embedding Manifold of Autoencoders for Hyperspectral Anomaly Detection
    Lu, Xiaoqiang
    Zhang, Wuxia
    Huang, Ju
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1527 - 1537
  • [50] Intelligent Human Anomaly Detection using LSTM Autoencoders
    Roseline, S. Abijah
    Karthik, Saraf
    Sruti, Immadi Naga Venkata Divya
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,