A general solution for a fourth-order fractional diffusion-wave equation defined in a bounded domain

被引:80
|
作者
Agrawal, OP [1 ]
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
关键词
fractional diffusion-wave equation; fractional derivative; Caputo fractional derivative; fourth-order diffusion-wave equation; Laplace transform method; sine transform method;
D O I
10.1016/S0045-7949(01)00026-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a general solution for a fourth-order fractional diffusion-wave equation defined in a bounded space domain. The fractional time derivative is described in the Caputo sense. The finite sine transform technique is used to convert a fractional differential equation from a space domain to a wave number domain. Laplace transform is used to reduce the resulting equation to an ordinary algebraic equation. Inverse Laplace and inverse finite sine transforms are used to obtain the desired solutions. The response expressions are written in terms of the Mittag-Leffler functions. For the first and the second derivative terms, these expressions reduce to fourth-order diffusion and bending wave solutions. Two examples are presented to show the application of the present technique. Results show that for fractional time derivatives of order 1/2 and 3/2, the system exhibits, respectively, slow diffusion and mixed diffusion-wave behaviors. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
下载
收藏
页码:1497 / 1501
页数:5
相关论文
共 50 条
  • [31] Numerical solution of fractional diffusion-wave equation based on fractional multistep method
    Yang, J. Y.
    Huang, J. F.
    Liang, D. M.
    Tang, Y. F.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (14) : 3652 - 3661
  • [32] Travelling wave solutions of a fourth-order semilinear diffusion equation
    Akveld, ME
    Hulshof, J
    APPLIED MATHEMATICS LETTERS, 1998, 11 (03) : 115 - 120
  • [33] Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density
    Gorenflo, Rudolf
    Luchko, Yuri
    Stojanovic, Mirjana
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (02) : 297 - 316
  • [34] Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density
    Rudolf Gorenflo
    Yuri Luchko
    Mirjana Stojanović
    Fractional Calculus and Applied Analysis, 2013, 16 : 297 - 316
  • [35] Numerical Analysis for the Variable Order Time Fractional Diffusion-Wave Equation
    Tian, Fupeng
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS (IEEE ICBDA 2020), 2020, : 131 - 134
  • [36] A fractional order diffusion-wave equation for time-dispersion media
    A. N. Bogolyubov
    A. A. Koblikov
    D. D. Smirnova
    N. E. Shapkina
    Moscow University Physics Bulletin, 2012, 67 : 423 - 428
  • [37] A fractional order diffusion-wave equation for time-dispersion media
    Bogolyubov, A. N.
    Koblikov, A. A.
    Smirnova, D. D.
    Shapkina, N. E.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2012, 67 (05) : 423 - 428
  • [38] A fractional integro-differentiation interpretation of the solution of a diffusion-wave equation
    Bogolyubov, A. N.
    Potapov, A. A.
    Rehviashvili, S. Sh.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2010, 65 (02) : 150 - 151
  • [39] A fractional integro-differentiation interpretation of the solution of a diffusion-wave equation
    A. N. Bogolyubov
    A. A. Potapov
    S. Sh. Rehviashvili
    Moscow University Physics Bulletin, 2010, 65 : 150 - 151
  • [40] On the Solution of the Nonlinear Fractional Diffusion-Wave Equation with Absorption: a Homotopy Approach
    Mishra, Vivek
    Vishal, Kumar
    Das, Subir
    Ong, Seng Huat
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (3-4): : 135 - 144