Hypothesis testing for Poisson vs. geometric distributions using Stochastic complexity

被引:0
|
作者
Lanterman, AD [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
关键词
MINIMUM DESCRIPTION LENGTH; EMISSION TOMOGRAPHY; MODEL SELECTION; ARTIFACTS; PRINCIPLE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We illustrate the concept of hypothesis testing using stochastic complexity, in the modern sense of normalized maximum likelihood codes, via the simple example of deciding whether a Poisson or a geometric model better matches the collected data. The Poisson model is generally found to have more power in describing data than the geometric model. Hence, the Poisson model is more harshly penalized by the stochastic complexity criterion. The integral of the square root of the Fisher information of both the Poisson and geometric models is found to be infinite. Hence, the allowed parameter range must be restricted somehow to make this integral finite. Some of the consequences of this are explored.
引用
收藏
页码:99 / 123
页数:25
相关论文
共 50 条
  • [21] Complexity vs. Simplicity: Groundwater Model Ranking Using Information Criteria
    Engelhardt, I.
    De Aguinaga, J. G.
    Mikat, H.
    Schueth, C.
    Liedl, R.
    GROUNDWATER, 2014, 52 (04) : 573 - 583
  • [22] Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis
    Pataky, Todd C.
    Vanrenterghem, Jos
    Robinson, Mark A.
    JOURNAL OF BIOMECHANICS, 2015, 48 (07) : 1277 - 1285
  • [23] Pedigree Analysis Package (PAP) vs. MORGAN: Model selection and hypothesis testing on a large pedigree
    Snow, GL
    Wijsman, EM
    GENETIC EPIDEMIOLOGY, 1998, 15 (04) : 355 - 369
  • [24] Characterization of stochastic resonance in a bistable system with Poisson white noise using statistical complexity measures
    He, Meijuan
    Xu, Wei
    Sun, Zhongkui
    Du, Lin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 28 (1-3) : 39 - 49
  • [25] Testing the Stochastic Implications of the Permanent Income Hypothesis Using Canadian Provincial Data
    Dejuan, Joseph P.
    Seater, John J.
    Wirjanto, Tony S.
    OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2010, 72 (01) : 89 - 108
  • [26] Mitochondrial eve dating based on computer simulations of coalescence distributions for stochastic vs. deterministic population models
    Cyran, Krzysztof A.
    PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION (ISTACS'07), 2007, : 107 - +
  • [27] Minimum message length inference of the Poisson and geometric models using heavy-tailed prior distributions
    Wong, Chi Kuen
    Makalic, Enes
    Schmidt, Daniel F.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2018, 83 : 1 - 11
  • [28] Statistical hypothesis testing in intraspecific phylogeography: nested clade phylogeographical analysis vs. approximate Bayesian computation
    Templeton, Alan R.
    MOLECULAR ECOLOGY, 2009, 18 (02) : 319 - 331
  • [29] Geometric vs. dynamical gates in quantum computing implementations using Zeeman and Heisenberg Hamiltonians
    Shi, Yu
    EPL, 2008, 83 (05)
  • [30] Testing the niche-breadth-range-size hypothesis: habitat specialization vs. performance in Australian alpine daisies
    Hirst, Megan J.
    Griffin, Philippa C.
    Sexton, Jason P.
    Hoffmann, Ary A.
    ECOLOGY, 2017, 98 (10) : 2708 - 2724