Geometric vs. dynamical gates in quantum computing implementations using Zeeman and Heisenberg Hamiltonians

被引:7
|
作者
Shi, Yu [1 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1209/0295-5075/83/50002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computing in terms of geometric phases, i.e. Berry or Aharonov-Anandan phases, is fault-tolerant to a certain degree. We examine its implementation based on Zeeman coupling with a rotating field and isotropic Heisenberg interaction, which describe NMR and can also be realized in quantum dots and cold atoms. Using a novel physical representation of the qubit basis states, we construct pi/8 and Hadamard gates based on Berry and Aharonov-Anandan phases. For two interacting qubits in a rotating field, we find that it is always impossible to construct a two-qubit gate based on Berry phases, or based on Aharonov-Anandan phases when the gyromagnetic ratios of the two qubits are equal. In implementing a universal set of quantum gates, one may combine geometric pi/8 and Hadamard gates and dynamical v SWAP gate. Copyright (c) EPLA, 2008.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum Computing vs. Coherent Computing
    Yamamoto, Yoshihisa
    Takata, Kenta
    Utsunomiya, Shoko
    NEW GENERATION COMPUTING, 2012, 30 (04) : 327 - 355
  • [2] Quantum Computing vs. Coherent Computing
    Yoshihisa Yamamoto
    Kenta Takata
    Shoko Utsunomiya
    New Generation Computing, 2012, 30 : 327 - 356
  • [3] A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing
    Carlo Cafaro
    Stefano Mancini
    Advances in Applied Clifford Algebras, 2011, 21 : 493 - 519
  • [4] A Geometric Algebra Perspective on Quantum Computational Gates and Universality in Quantum Computing
    Cafaro, Carlo
    Mancini, Stefano
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 493 - 519
  • [5] Conditions for Equivalent Noise Sensitivity of Geometric and Dynamical Quantum Gates
    Colmenar, R. K. L.
    Gungordu, Utkan
    Kestner, J. P.
    PRX QUANTUM, 2022, 3 (03):
  • [6] Implementations of quantum computing using cavity quantum electrodynamics schemes
    Grangier, P
    Reymond, G
    Schlosser, N
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (9-11): : 859 - 874
  • [7] High-Fidelity and Robust Geometric Quantum Gates that Outperform Dynamical Ones
    Chen, Tao
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2020, 14 (06):
  • [8] Spin swap and √swap vs. double occupancy in quantum gates
    Kaplan, T. A.
    Piermarocchi, C.
    NANO-SCALE MATERIALS: FROM SCIENCE TO TECHNOLOGY, 2006, : 249 - 260
  • [9] Quantum Programming Paradigms: Boson Sampling vs. Qubit Gates
    Alarcon, Sonia Lopez
    Haverly, Andrew
    PHOTONICS FOR QUANTUM 2022, 2022, 12243
  • [10] Geometric information in eight dimensions vs. quantum information
    Tarkhanov, Victor I.
    Nesterov, Michael M.
    QUANTUM INFORMATICS 2007, 2008, 7023