Geometric vs. dynamical gates in quantum computing implementations using Zeeman and Heisenberg Hamiltonians

被引:7
|
作者
Shi, Yu [1 ]
机构
[1] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
美国国家科学基金会;
关键词
D O I
10.1209/0295-5075/83/50002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum computing in terms of geometric phases, i.e. Berry or Aharonov-Anandan phases, is fault-tolerant to a certain degree. We examine its implementation based on Zeeman coupling with a rotating field and isotropic Heisenberg interaction, which describe NMR and can also be realized in quantum dots and cold atoms. Using a novel physical representation of the qubit basis states, we construct pi/8 and Hadamard gates based on Berry and Aharonov-Anandan phases. For two interacting qubits in a rotating field, we find that it is always impossible to construct a two-qubit gate based on Berry phases, or based on Aharonov-Anandan phases when the gyromagnetic ratios of the two qubits are equal. In implementing a universal set of quantum gates, one may combine geometric pi/8 and Hadamard gates and dynamical v SWAP gate. Copyright (c) EPLA, 2008.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Quantum computing on lattices using global two-qubit gates
    Ivanyos, G
    Massar, S
    Nagy, AB
    PHYSICAL REVIEW A, 2005, 72 (02):
  • [22] All-optical quantum computing using cubic phase gates
    Budinger, Niklas
    Furusawa, Akira
    van Loock, Peter
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [23] Geometric Algebra Quantum Convolutional Neural Network A model using geometric (Clifford) algebras and quantum computing
    Altamirano-Escobedo, Guillermo
    Bayro-Corrochano, Eduardo
    IEEE SIGNAL PROCESSING MAGAZINE, 2024, 41 (02) : 75 - 85
  • [24] Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions: Which one prevails?
    Bravina, L. V.
    Lokhtin, I. P.
    Malinina, L. V.
    Petrushanko, S. V.
    Snigirev, A. M.
    Zabrodin, E. E.
    EUROPEAN PHYSICAL JOURNAL A, 2017, 53 (11):
  • [25] Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions: Which one prevails?
    L. V. Bravina
    I. P. Lokhtin
    L. V. Malinina
    S. V. Petrushanko
    A. M. Snigirev
    E. E. Zabrodin
    The European Physical Journal A, 2017, 53
  • [26] Frustrated Heisenberg antiferromagnets:: Fluctuation-induced first order vs. deconfined quantum criticality
    Krüger, F
    Scheidl, S
    EUROPHYSICS LETTERS, 2006, 74 (05): : 896 - 902
  • [27] Potential and limits to cluster-state quantum computing using probabilistic gates
    Gross, D.
    Kieling, K.
    Eisert, J.
    PHYSICAL REVIEW A, 2006, 74 (04):
  • [28] Controlling dynamical systems to complex target states using machine learning: next-generation vs. classical reservoir computing
    Haluszczynski, Alexander
    Koeglmayr, Daniel
    Raeth, Christoph
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [29] Hypothesis testing for Poisson vs. geometric distributions using Stochastic complexity
    Lanterman, AD
    Advances in Minimum Description Length Theory and Applications, 2005, : 99 - 123
  • [30] Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity
    Solenov, Dmitry
    Economou, Sophia E.
    Reinecke, T. L.
    PHYSICAL REVIEW B, 2013, 87 (03)