Efficient quantum error correction for fully correlated noise

被引:18
|
作者
Li, Chi-Kwong [1 ,6 ]
Nakahara, Mikio [2 ,3 ]
Poon, Yiu-Tung [4 ]
Sze, Nung-Sing [5 ]
Tomita, Hiroyuki [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Kinki Univ, Interdisciplinary Grad Sch Sci & Engn, Res Ctr Quantum Comp, Higashi Osaka 5778502, Japan
[3] Kinki Univ, Dept Phys, Higashi Osaka 5778502, Japan
[4] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[5] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum error correction; Higher rank numerical range; Recovery operator; Mixed unitary channel; RANK NUMERICAL RANGES; CODES;
D O I
10.1016/j.physleta.2011.07.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate an efficient quantum error correction of a fully correlated noise. Suppose the noise is characterized by a quantum channel whose error operators take fully correlated forms given by sigma(circle times n)(x), sigma(circle times n)(y) and sigma(circle times n)(2), where n > 2 is the number of qubits encoding the codeword. It is proved that (i) n qubits codeword encodes (n - 1) data qubits when n is odd and (ii) n qubits codeword implements an error-free encoding, which encode (n - 2) data qubits when n is even. Quantum circuits implementing these schemes are constructed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3255 / 3258
页数:4
相关论文
共 50 条
  • [21] Quantum Error Correction of Time-correlated Errors
    Feng Lu
    Dan C. Marinescu
    Quantum Information Processing, 2007, 6 : 273 - 293
  • [22] Quantum error correction for various forms of noise
    Gea-Banacloche, J
    Clemens, JP
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS II, 2004, 5468 : 252 - 261
  • [23] Theory of quantum error correction for general noise
    Knill, E
    Laflamme, R
    Viola, L
    PHYSICAL REVIEW LETTERS, 2000, 84 (11) : 2525 - 2528
  • [24] Correlated Noise Estimation and Error Correction in Parallel Storage Channels
    Varsamou, Maria
    Zacharias, Ilias
    Antonakopou, Theodore
    2013 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (IEEE ISSPIT 2013), 2013, : 484 - 489
  • [25] CONCATENATION OF ERROR AVOIDING WITH ERROR CORRECTING QUANTUM CODES FOR CORRELATED NOISE MODELS
    Cafaro, Carlo
    Mancini, Stefano
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 : 309 - 330
  • [26] Efficient computations of encodings for quantum error correction
    Cleve, R
    Gottesman, D
    PHYSICAL REVIEW A, 1997, 56 (01): : 76 - 82
  • [27] An efficient simulation of quantum error correction codes
    Priya, R. Padma
    Baradeswaran, A.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (03) : 2167 - 2175
  • [28] Entanglement production by quantum error correction in the presence of correlated environment
    De Chiara, G
    Fazio, R
    Macchiavello, C
    Palma, GM
    EUROPHYSICS LETTERS, 2004, 67 (05): : 714 - 720
  • [29] Gaussian Error Correction of Quantum States in a Correlated Noisy Channel
    Lassen, Mikael
    Berni, Adriano
    Madsen, Lars S.
    Filip, Radim
    Andersen, Ulrik L.
    PHYSICAL REVIEW LETTERS, 2013, 111 (18)
  • [30] Quantum error correction is applicable for reducing spatially correlated decoherence
    Duan, LM
    Guo, GC
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 337 - 340