Quantum Error Correction of Time-correlated Errors

被引:0
|
作者
Feng Lu
Dan C. Marinescu
机构
[1] University of Central Florida,School of Electrical Engineering and Computer Science
来源
关键词
quantum information; error correction; time-correlated; stabilizer code; 03.67.-a; 03.67.Pp; 03.65.-w;
D O I
暂无
中图分类号
学科分类号
摘要
The complexity of the error correction circuitry forces us to design quantum error correction codes capable of correcting a single error per error correction cycle. Yet, time-correlated error are common for physical implementations of quantum systems; an error corrected during the previous cycle may reoccur later due to physical processes specific for each physical implementation of the qubits. In this paper, we study quantum error correction for a restricted class of time-correlated errors in a spin-boson model. The algorithm we propose allows the correction of two errors per error correction cycle, provided that one of them is time-correlated. The algorithm can be applied to any stabilizer code when the two logical qubits \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mid {\rm 0}_L \rangle$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mid {\rm 1}_L \rangle$$\end{document} are entangled states of 2n basis states in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}_{2^n}$$\end{document} .
引用
收藏
页码:273 / 293
页数:20
相关论文
共 50 条
  • [1] Quantum error correction of time-correlated errors
    Lu, Feng
    Marinescu, Dan C.
    [J]. QUANTUM INFORMATION PROCESSING, 2007, 6 (04) : 273 - 293
  • [2] Quantum error-correction for spatially correlated errors
    Arimitsu, T.
    Hayashi, T.
    Kitajima, S.
    Shibata, F.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2008, 6 : 575 - 580
  • [3] Time-Correlated Markovian Quantum Channels
    Jeong, Youngmin
    Shin, Hyundong
    Win, Moe Z.
    [J]. 2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [4] Construction and Performance of Quantum Burst Error Correction Codes for Correlated Errors
    Fan, Jihao
    Hsieh, Min-Hsiu
    Chen, Hanwu
    Chen, He
    Li, Yonghui
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 2336 - 2340
  • [5] Time-correlated model error in the (ensemble) Kalman smoother
    Amezcua, Javier
    van Leeuwen, Peter Jan
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (717) : 2650 - 2665
  • [6] Removing leakage-induced correlated errors in superconducting quantum error correction
    McEwen, M.
    Kafri, D.
    Chen, Z.
    Atalaya, J.
    Satzinger, K. J.
    Quintana, C.
    Klimov, P., V
    Sank, D.
    Gidney, C.
    Fowler, A. G.
    Arute, F.
    Arya, K.
    Buckley, B.
    Burkett, B.
    Bushnell, N.
    Chiaro, B.
    Collins, R.
    Demura, S.
    Dunsworth, A.
    Erickson, C.
    Foxen, B.
    Giustina, M.
    Huang, T.
    Hong, S.
    Jeffrey, E.
    Kim, S.
    Kechedzhi, K.
    Kostritsa, F.
    Laptev, P.
    Megrant, A.
    Mi, X.
    Mutus, J.
    Naaman, O.
    Neeley, M.
    Neill, C.
    Niu, M.
    Paler, A.
    Redd, N.
    Roushan, P.
    White, T. C.
    Yao, J.
    Yeh, P.
    Zalcman, A.
    Chen, Yu
    Smelyanskiy, N.
    Martinis, John M.
    Neven, H.
    Kelly, J.
    Korotkov, A. N.
    Petukhov, A. G.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Removing leakage-induced correlated errors in superconducting quantum error correction
    M. McEwen
    D. Kafri
    Z. Chen
    J. Atalaya
    K. J. Satzinger
    C. Quintana
    P. V. Klimov
    D. Sank
    C. Gidney
    A. G. Fowler
    F. Arute
    K. Arya
    B. Buckley
    B. Burkett
    N. Bushnell
    B. Chiaro
    R. Collins
    S. Demura
    A. Dunsworth
    C. Erickson
    B. Foxen
    M. Giustina
    T. Huang
    S. Hong
    E. Jeffrey
    S. Kim
    K. Kechedzhi
    F. Kostritsa
    P. Laptev
    A. Megrant
    X. Mi
    J. Mutus
    O. Naaman
    M. Neeley
    C. Neill
    M. Niu
    A. Paler
    N. Redd
    P. Roushan
    T. C. White
    J. Yao
    P. Yeh
    A. Zalcman
    Yu Chen
    V. N. Smelyanskiy
    John M. Martinis
    H. Neven
    J. Kelly
    A. N. Korotkov
    A. G. Petukhov
    [J]. Nature Communications, 12
  • [8] Resilience to Time-Correlated Noise in Quantum Computation
    Bombin, Hector
    [J]. PHYSICAL REVIEW X, 2016, 6 (04):
  • [9] Consideration of time-correlated errors in a Kalman filter applicable to GNSS
    Petovello, M. G.
    O'Keefe, K.
    Lachapelle, G.
    Cannon, M. E.
    [J]. JOURNAL OF GEODESY, 2009, 83 (01) : 51 - 56
  • [10] Practical Approaches to Kalman Filtering with Time-Correlated Measurement Errors
    Wang, Kedong
    Li, Yong
    Rizos, Chris
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (02) : 1669 - 1681