Fluid turbulence simulations of divertor heat load for ITER hybrid scenario using BOUT plus

被引:4
|
作者
Wang, Xueyun [1 ,2 ]
Xu, Xueqiao [2 ]
Snyder, Philip B. [3 ,5 ]
Li, Zeyu [4 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Gen Atom, San Diego, CA 92186 USA
[4] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
国家重点研发计划;
关键词
turbulent transport; divertor heat load; ITER; heat flux width; GRASSY ELMS; ENERGY; PARTICLE;
D O I
10.1088/1741-4326/ac3b8a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The BOUT++ six-field turbulence code is used to simulate the ITER 11.5 MA hybrid scenario and a brief comparison is made among ITER baseline, hybrid and steady-state operation (SSO) scenarios. Peeling-ballooning instabilities with different toroidal mode numbers dominate in different scenarios and consequently yield different types of ELMs. The energy loss fractions (Delta W (ped)/W (ped)) caused by unmitigated ELMs in the baseline and hybrid scenarios are large (similar to 2%) while the one in the SSO scenario is dramatically smaller (<1%), which are consistent with the features of type-I ELMs and grassy ELMs respectively. The intra ELM divertor heat flux width in the three scenarios given by the simulations is larger than the estimations for inter-ELM phase based on Goldston's heuristic drift model. The toroidal gap edge melting limit of tungsten monoblocks of divertor targets imposes constraints on ELM energy loss, giving that the ELM energy loss fraction should be smaller than 0.4%, 1.0%, and 1.2% for ITER baseline, hybrid and SSO scenarios, correspondingly. The simulation shows that only the SSO scenario with grassy ELMs may satisfy the constraint.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Large Eddy Simulations of Compressible MHD Turbulence in Heat-Conducting Fluid
    Chernyshov, A. A.
    Karelsky, K. V.
    Petrosyan, A. S.
    DIRECT AND LARGE-EDDY SIMULATION VII, 2010, 13 : 601 - 605
  • [32] Nonlinear fluid simulation of particle and heat fluxes during burst of ELMs on DIII-D with BOUT plus plus code
    Xia, T. Y.
    Xu, X. Q.
    NUCLEAR FUSION, 2015, 55 (11)
  • [33] Turbulence Spreading into an Edge Stochastic Magnetic Layer Induced by Magnetic Fluctuation and Its Impact on Divertor Heat Load
    Kobayashi, M.
    Tanaka, K.
    Ida, K.
    Hayashi, Y.
    Takemura, Y.
    Kinoshita, T.
    PHYSICAL REVIEW LETTERS, 2022, 128 (12)
  • [34] Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model
    Krappel, Timo
    Ruprecht, Albert
    Riedelbauch, Stefan
    Jester-Zuerker, Roland
    Jung, Alexander
    27TH IAHR SYMPOSIUM ON HYDRAULIC MACHINERY AND SYSTEMS (IAHR 2014), PTS 1-7, 2014, 22
  • [35] Edge localized mode characteristics and divertor heat flux during stationary and transient phase for CFETR hybrid scenario
    Li, Zeyu
    Zhu, Yiren
    Xu, Guoliang
    Chan, V. S.
    Xu, Xueqiao
    Chen, Jiale
    Ding, Rui
    Xia, Tianyang
    Jian, Xiang
    Zou, Yunpeng
    Xiao, Chijie
    Wang, Xiaogang
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (03)
  • [36] Integrated core-SOL-divertor modelling for ITER including impurity: effect of tungsten on fusion performance in H-mode and hybrid scenario
    Zagorski, R.
    Voitsekhovitch, I.
    Ivanova-Stanik, I.
    Koechl, F.
    Belo, P.
    Fable, E.
    Garcia, J.
    Garzotti, L.
    Hobirk, J.
    Hogeweij, G. M. D.
    Joffrin, E.
    Litaudon, X.
    Polevoi, A. R.
    Telesca, G.
    NUCLEAR FUSION, 2015, 55 (05)
  • [37] The role of ion and electron-scale turbulence in setting heat and particle transport in the DIII-D ITER baseline scenario
    Howard, N. T.
    Holland, C.
    Rhodes, T. L.
    Candy, J.
    Rodriguez-Fernandez, P.
    Greenwald, M.
    White, A. E.
    Sciortino, F.
    NUCLEAR FUSION, 2021, 61 (10)
  • [38] Electron temperature and heat load measurements in the COMPASS divertor using the new system of probes
    Adamek, J.
    Seidl, J.
    Horacek, J.
    Komm, M.
    Eich, T.
    Panek, R.
    Cavalier, J.
    Devitre, A.
    Peterka, M.
    Vondracek, P.
    Stockel, J.
    Sestak, D.
    Grover, O.
    Bilkova, P.
    Bohm, P.
    Varju, J.
    Havranek, A.
    Weinzettl, V.
    Lovell, J.
    Dimitrova, M.
    Mitosinkova, K.
    Dejarnac, R.
    Hron, M.
    NUCLEAR FUSION, 2017, 57 (11)
  • [39] A spatially hybrid fluid-kinetic neutral model for SOLPS-ITER plasma edge simulations
    Blommaert, Maarten
    Horsten, Niels
    Boerner, Petra
    Dekeyser, Wouter
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 28 - 33
  • [40] Analysis of Loss of Heat Sink for ITER Divertor Cooling System Using Modified RELAP/SCDAPSIM/MOD 4.0
    Saraswat, S. P.
    Ray, D.
    Munshi, P.
    Allison, C.
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2019, 5 (04):