Fluid turbulence simulations of divertor heat load for ITER hybrid scenario using BOUT plus

被引:4
|
作者
Wang, Xueyun [1 ,2 ]
Xu, Xueqiao [2 ]
Snyder, Philip B. [3 ,5 ]
Li, Zeyu [4 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Gen Atom, San Diego, CA 92186 USA
[4] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA
[5] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
基金
国家重点研发计划;
关键词
turbulent transport; divertor heat load; ITER; heat flux width; GRASSY ELMS; ENERGY; PARTICLE;
D O I
10.1088/1741-4326/ac3b8a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The BOUT++ six-field turbulence code is used to simulate the ITER 11.5 MA hybrid scenario and a brief comparison is made among ITER baseline, hybrid and steady-state operation (SSO) scenarios. Peeling-ballooning instabilities with different toroidal mode numbers dominate in different scenarios and consequently yield different types of ELMs. The energy loss fractions (Delta W (ped)/W (ped)) caused by unmitigated ELMs in the baseline and hybrid scenarios are large (similar to 2%) while the one in the SSO scenario is dramatically smaller (<1%), which are consistent with the features of type-I ELMs and grassy ELMs respectively. The intra ELM divertor heat flux width in the three scenarios given by the simulations is larger than the estimations for inter-ELM phase based on Goldston's heuristic drift model. The toroidal gap edge melting limit of tungsten monoblocks of divertor targets imposes constraints on ELM energy loss, giving that the ELM energy loss fraction should be smaller than 0.4%, 1.0%, and 1.2% for ITER baseline, hybrid and SSO scenarios, correspondingly. The simulation shows that only the SSO scenario with grassy ELMs may satisfy the constraint.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Prediction of divertor heat flux width for ITER using BOUT plus plus transport and turbulence module
    Li, Ze-Yu
    Xu, X. Q.
    Li, Na-Mi
    Chan, V. S.
    Wang, Xiao-Gang
    NUCLEAR FUSION, 2019, 59 (04)
  • [2] Turbulence simulations with BOUT plus plus by using SOLPS grids for SOLPS/BOUT plus plus coupling
    Zhang, D. R.
    Ding, R.
    Si, H.
    Chen, Y. P.
    Xu, X. Q.
    Xia, T. Y.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2024, 64 (7-8)
  • [3] Prediction of divertor heat flux width for ITER pre-fusion power operation using BOUT plus plus transport code
    He, X. X.
    Xu, X. Q.
    Li, Z. Y.
    Zhu, B.
    Liu, Y.
    NUCLEAR FUSION, 2022, 62 (05)
  • [4] Corrigendum: Prediction of divertor heat flux width for ITER using BOUT++ transport and turbulence module (vol 59, 046014 , 2019)
    Li, Zeyu
    Xu, Xueqiao
    Li, Na-Mi
    Chan, V. S.
    Wang, Xiao-Gang
    NUCLEAR FUSION, 2020, 60 (02)
  • [5] Simulations of divertor heat flux width using transport code with cross-field drifts under the BOUT plus plus framework
    Li, N. M.
    Xu, X. Q.
    Hughes, J. W.
    Terry, J. L.
    Sun, J. Z.
    Wang, D. Z.
    AIP ADVANCES, 2020, 10 (01)
  • [6] Drift reduced Landau fluid model for magnetized plasma turbulence simulations in BOUT plus plus framework
    Zhu, Ben
    Seto, Haruki
    Xu, Xue-qiao
    Yagi, Masatoshi
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 267
  • [7] Simulation of divertor heat flux width on EAST by BOUT plus plus transport code
    Deng, G. Z.
    Xu, X. Q.
    Li, N. M.
    Liu, X. J.
    Liu, X.
    Xu, J. C.
    Feng, W.
    Liu, J. B.
    Gao, S. L.
    Liu, S. C.
    Xia, T. Y.
    Wang, L.
    NUCLEAR FUSION, 2020, 60 (08)
  • [8] A BOUT plus plus extension for full annular tokamak edge MHD and turbulence simulations
    Seto, Haruki
    Dudson, Benjamin D.
    Xu, Xue-Qiao
    Yagi, Masatoshi
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 283
  • [9] Linear peeling-ballooning mode simulations in snowflake-like divertor configuration using BOUT plus plus code
    Ma, J. F.
    Xu, X. Q.
    Dudson, B. D.
    NUCLEAR FUSION, 2014, 54 (03)
  • [10] Comparative study of boron and neon injections on divertor heat fluxes using SOLPS-ITER simulations
    彭磊
    孙震
    孙继忠
    Rajesh Maingi
    高放
    Xavier Bonnin
    常华溢
    汪炜康
    刘金远
    Chinese Physics B, 2024, 33 (11) : 363 - 372