PREDICTION OF SILICON CONTENT IN HOT METAL BASED ON GOLDEN SINE PARTICLE SWARM OPTIMIZATION AND RANDOM FOREST

被引:0
|
作者
Hu, CH. [1 ]
Yang, K. [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
来源
METALURGIJA | 2022年 / 61卷 / 02期
关键词
blast furnace; hot metal; silicon; particle swarm optimization; golden sine algorithm; random forest;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Particle Swarm Optimization (PSO) algorithm quickly falls into local optimum, low precision. In this paper, add the golden sine operation to the particle position update. The results show that the improved PSO algorithm has better optimization ability. The main parameters affecting the silicon content in hot metal are selected. Then, calculate the correlation coefficient and significance level between parameters and silicon content in hot metal. Finally, the prediction model of silicon content in hot metal is established based on the Random Forest (RF) optimized by improved PSO. The results show that the hit rate is 87,17 %.
引用
收藏
页码:325 / 328
页数:4
相关论文
共 50 条
  • [11] Support vector machine algorithm based on random forest and quantum particle swarm optimization
    Cui Z.
    Geng X.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (09): : 2929 - 2936
  • [12] Particle Swarm Optimization-Based Random Forest Framework for the Classification of Chronic Diseases
    Singh, Akansha
    Prakash, Nupur
    Jain, Anurag
    IEEE ACCESS, 2023, 11 : 133931 - 133946
  • [13] Prediction of the Hot Metal Silicon Content in the Blast Furnace
    Beskardes, Ahmet
    Turkoglu, Soner
    Aci, Cigdem
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 709 - 712
  • [15] Chaotic identification and prediction of silicon content in hot metal
    Gao, CH
    Zhou, ZM
    Qian, JX
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2005, 12 (05) : 3 - +
  • [16] Fuzzy prediction of silicon content for BF hot metal
    Li, QH
    Liu, XG
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2005, 12 (06) : 1 - 4
  • [18] Heavy metal content prediction based on Random Forest and Sparrow Search Algorithm
    Chen, Ying
    Liu, Zhengying
    Xu, Chongxuan
    Zhao, Xueliang
    Pang, Lili
    Li, Kang
    Shi, Yanxin
    JOURNAL OF CHEMOMETRICS, 2022, 36 (10)
  • [19] Geological adaptive TBM operation parameter decision based on random forest and particle swarm optimization
    Liu M.
    Tao J.
    Qin C.
    Yu H.
    Liu C.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2023, 54 (04): : 1311 - 1324
  • [20] A Novel Gene Selection Algorithm for cancer identification based on Random Forest and Particle Swarm Optimization
    Pashaei, Elnaz
    Ozen, Mustafa
    Aydin, Nizamettin
    2015 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2015, : 67 - 72