Mixing and eigenfunctions of singular hyperbolic attractors

被引:0
|
作者
Sataev, E. A. [1 ]
机构
[1] Obninsk Inst Nucl Power Engn, Obninsk, Russia
基金
俄罗斯基础研究基金会;
关键词
singular hyperbolic attractor; invariant measure; mixing; eigenfunction; AXIOM;
D O I
10.1070/SM2015v206n04ABEH004470
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with investigating singular hyperbolic flows. It is shown that an eigenfunction cannot be continuous on an ergodic component containing a fixed point. However, it is continuous on a certain set (after a modification on a nullset). The following alternative is established: either there exists an eigenfunction on an ergodic component or the flow is mixing on this component. Sufficient conditions for mixing are given.
引用
收藏
页码:572 / 599
页数:28
相关论文
共 50 条
  • [21] Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors
    Araujo, Vitor
    Galatolo, Stefano
    Pacifico, Maria Jose
    MATHEMATISCHE ZEITSCHRIFT, 2014, 276 (3-4) : 1001 - 1048
  • [22] Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers
    Morales, CA
    Pacifico, MJ
    Pujals, ER
    ANNALS OF MATHEMATICS, 2004, 160 (02) : 375 - 432
  • [23] HYPERBOLIC ATTRACTORS OF DIFFEOMORPHISMS
    PLYKIN, RV
    RUSSIAN MATHEMATICAL SURVEYS, 1980, 35 (03) : 109 - 121
  • [24] Eigenfunctions of the hyperbolic composition operator
    Vitali Chkliar
    Integral Equations and Operator Theory, 1997, 29 : 364 - 367
  • [25] Eigenfunctions of the hyperbolic composition operator
    Chkliar, V
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (03) : 364 - 367
  • [26] Singular Continuations of Attractors
    Giraldo, A.
    Sanjurjo, J. M. R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (02): : 554 - 575
  • [27] Erratum to: Decay of correlations for maps with uniformly contracting fibers and logarithm law for singular hyperbolic attractors
    Vitor Araújo
    Stefano Galatolo
    Maria José Pacifico
    Mathematische Zeitschrift, 2016, 282 : 615 - 621
  • [28] Lyapunov exponents of hyperbolic attractors
    Da-quan Jiang
    Pei-dong Liu
    Min Qian
    manuscripta mathematica, 2002, 108 : 43 - 67
  • [29] Lyapunov Exponents of Hyperbolic Attractors
    Jiang, Da-Quan
    Qian, Min
    Qian, Min-Ping
    MATHEMATICAL THEORY OF NONEQUILIBRIUM STEADY STATES: ON THE FRONTIER OF PROBABILITY AND DYNAMICAL SYSTEMS, 2004, 1833 : 189 - 214
  • [30] STOCHASTIC STABILITY OF HYPERBOLIC ATTRACTORS
    YOUNG, LS
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 : 311 - 319