Lyapunov exponents of hyperbolic attractors

被引:0
|
作者
Da-quan Jiang
Pei-dong Liu
Min Qian
机构
[1] LMAM,
[2] School of Mathematical Sciences,undefined
[3] Peking University,undefined
[4] Beijing 100871,undefined
[5] P.R. China. e-mail: jiangdq@math.pku.edu.cn,undefined
来源
manuscripta mathematica | 2002年 / 108卷
关键词
Lyapunov Exponent; Hyperbolic Attractor;
D O I
暂无
中图分类号
学科分类号
摘要
 Let μ+ be the SBR measure on a hyperbolic attractor Ω of a C2 Axiom A diffeomorphism (M,f) and v the volume measure on M. As is known, μ+-almost every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} is Lyapunov regular and the Lyapunov characteristic exponents of (f,Df) at x are constants $\lambda^{(i)}(\mu_+,f),1\leq i\leq s$. In this paper we prove that $v$-almost every $x$ in the basin of attraction $W^s(\Omega)$ is positively regular and the Lyapunov characteristic exponents of $(f,Df)$ at $x$ are the constants \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. Similar results are also obtained for nonuniformly completely hyperbolic attractors.
引用
收藏
页码:43 / 67
页数:24
相关论文
共 50 条
  • [1] Lyapunov Exponents of Hyperbolic Attractors
    Jiang, Da-Quan
    Qian, Min
    Qian, Min-Ping
    MATHEMATICAL THEORY OF NONEQUILIBRIUM STEADY STATES: ON THE FRONTIER OF PROBABILITY AND DYNAMICAL SYSTEMS, 2004, 1833 : 189 - 214
  • [2] Lyapunov exponents of hyperbolic attractors
    Jiang, DQ
    Liu, PD
    Qian, M
    MANUSCRIPTA MATHEMATICA, 2002, 108 (01) : 43 - 67
  • [3] STABLE ERGODICITY FOR PARTIALLY HYPERBOLIC ATTRACTORS WITH POSITIVE CENTRAL LYAPUNOV EXPONENTS
    Vasquez, Carlos H.
    JOURNAL OF MODERN DYNAMICS, 2009, 3 (02) : 233 - 251
  • [4] Lyapunov exponents of symmetric attractors
    Aston, Philip J.
    Melbourne, Ian
    NONLINEARITY, 2006, 19 (10) : 2455 - 2466
  • [5] LYAPUNOV EXPONENTS FOR NONUNIFORM ATTRACTORS
    GALLEZ, D
    BABLOYANTZ, A
    PHYSICS LETTERS A, 1991, 161 (03) : 247 - 254
  • [6] Normal Lyapunov exponents and asymptotically stable attractors
    Xu, Lan
    Chen, Beimei
    Zhao, Yun
    Cao, Yongluo
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (02): : 207 - 218
  • [7] LYAPUNOV EXPONENTS OF HYPERBOLIC MEASURES AND HYPERBOLIC PERIODIC ORBITS
    Wang, Zhenqi
    Sun, Wenxiang
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (08) : 4267 - 4282
  • [8] CENTER LYAPUNOV EXPONENTS IN PARTIALLY HYPERBOLIC DYNAMICS
    Gogolev, Andrey
    Tahzibi, Ali
    JOURNAL OF MODERN DYNAMICS, 2014, 8 (3-4) : 549 - 576
  • [9] The Lyapunov exponents of C 1 hyperbolic systems
    Zhou YunHua
    Sun WenXiang
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (07) : 1743 - 1752
  • [10] EVALUATION OF UPPER LYAPUNOV EXPONENTS ON HYPERBOLIC SETS
    CORLESS, RM
    PILYUGIN, SY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (01) : 145 - 159