Penalized log-likelihood estimation for partly linear transformation models with current status data

被引:45
|
作者
Ma, SG
Kosorok, MR
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 05期
关键词
current status data; empirical processes; nonparametric regression; semiparametric efficiency; splines; transformation models;
D O I
10.1214/009053605000000444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider partly linear transformation models applied to current status data. The unknown quantities are the transformation function, a linear regression parameter and a nonparametric regression effect. It is shown that the penalized MLE for the regression parameter is asymptotically normal and efficient and converges at the parametric rate, although the penalized MLE for the transformation function and nonparametric regression effect are only n(1/3) consistent. Inference for the regression parameter based on a block jackknife is investigated. We also study computational issues and demonstrate the proposed methodology with a simulation study. The transformation models and partly linear regression terms, coupled with new estimation and inference techniques, provide flexible alternatives to the Cox model for current status data analysis.
引用
收藏
页码:2256 / 2290
页数:35
相关论文
共 50 条
  • [31] Estimating the expectation of the log-likelihood with censored data for estimator selection
    Liquet, B
    Commenges, D
    LIFETIME DATA ANALYSIS, 2004, 10 (04) : 351 - 367
  • [32] Algorithm 762: LLDRLF, log-likelihood and some derivatives for log-F models
    Univ of Texas M. D. Anderson Cancer, Cent, Houston, United States
    ACM Trans Math Software, 3 (372-382):
  • [33] Unsupervised Log-Likelihood Ratio Estimation for Short Packets in Impulsive Noise
    Mestrah, Yasser
    Anade, Dadja
    Savard, Anne
    Goupil, Alban
    Egan, Malcolm
    Mary, Philippe
    Gorce, Jean-Marie
    Clavier, Laurent
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 944 - 949
  • [34] Unbiased estimation of the gradient of the log-likelihood for a class of continuous-time state-space models
    Ballesio, Marco
    Jasra, Ajay
    MONTE CARLO METHODS AND APPLICATIONS, 2022, 28 (01): : 61 - 83
  • [35] Penalized empirical likelihood estimation of semiparametric models
    Otsu, Taisuke
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (10) : 1923 - 1954
  • [36] Algorithm 762: LLDRLF, log-likelihood and some derivatives for log-F models
    Brown, BW
    Spears, FM
    Levy, LB
    Lovato, J
    Russell, K
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1996, 22 (03): : 372 - 382
  • [37] Adaptive penalized M-estimation with current status data
    Shuangge Ma
    Michael R. Kosorok
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 511 - 526
  • [38] Adaptive penalized M-estimation with current status data
    Ma, Shuangge
    Kosorok, Michael R.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (03) : 511 - 526
  • [39] Penalized nonparametric likelihood-based inference for current status data model
    Hao, Meiling
    Lin, Yuanyuan
    Liu, Kin-yat
    Zhao, Xingqiu
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 3099 - 3134
  • [40] Spatial extreme quantile estimation using a weighted log-likelihood approach
    Carreau, Julie
    Girard, Stephane
    JOURNAL OF THE SFDS, 2011, 152 (03): : 66 - 82