Penalized log-likelihood estimation for partly linear transformation models with current status data

被引:45
|
作者
Ma, SG
Kosorok, MR
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
来源
ANNALS OF STATISTICS | 2005年 / 33卷 / 05期
关键词
current status data; empirical processes; nonparametric regression; semiparametric efficiency; splines; transformation models;
D O I
10.1214/009053605000000444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider partly linear transformation models applied to current status data. The unknown quantities are the transformation function, a linear regression parameter and a nonparametric regression effect. It is shown that the penalized MLE for the regression parameter is asymptotically normal and efficient and converges at the parametric rate, although the penalized MLE for the transformation function and nonparametric regression effect are only n(1/3) consistent. Inference for the regression parameter based on a block jackknife is investigated. We also study computational issues and demonstrate the proposed methodology with a simulation study. The transformation models and partly linear regression terms, coupled with new estimation and inference techniques, provide flexible alternatives to the Cox model for current status data analysis.
引用
收藏
页码:2256 / 2290
页数:35
相关论文
共 50 条