Feature reconstruction based on t-SNE: an approach for fault diagnosis of rotating machinery

被引:3
|
作者
Chen, Jiayu [1 ]
Zhou, Dong [1 ]
Lyu, Chuan [1 ]
Lu, Chen [1 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Sci & Technol Reliabil & Environm Engn Lab, State Key Lab Virtual Real Technol & Syst, Beijing, Peoples R China
关键词
rotating machinery; t-SNE; local characteristic decomposition (LCD); random forest (RF); APPROXIMATE ENTROPY; LCD;
D O I
10.21595/jve.2017.18741
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
It is crucial to effectively and accurately diagnose the faults of rotating machinery. However, the high-dimensional characteristic of the features, which are extracted from the vibration signals of rotating machinery, makes it difficult to accurately recognize the fault mode. To resolve this problem, t-distributed stochastic neighbor embedding (t-SNE) is introduced to reduce the dimensionality of the feature vector in this paper. Therefore, the article describes a proposed method for fault diagnosis of rotating machinery based on local characteristic decomposition-sample entropy (LCD-SampEn), t-SNE and random forest (RF). First, the original vibration signals of rotating machinery are decomposed to a number of intrinsic scale components (ISCs) by the LCD. Next, the feature vector is obtained through calculating SampEn of each ISC. Subsequently, t-SNE is used to reduce the dimension of the feature vectors. Finally, the reconstructed feature vectors are applied to the RF for implementing the classification of the fault patterns. Two cases are studied based on the experimental data of the fault diagnoses of a bearing and a hydraulic pump. The proposed method can achieve a diagnosis rate of 98.22 % and 98.75 % for the bearing and the hydraulic pump, respectively. Compared with the other methods, the proposed approach exhibits the best performance. The results validate the effectiveness and superiority of the proposed method.
引用
收藏
页码:5047 / 5060
页数:14
相关论文
共 50 条
  • [21] Rolling bearing fault diagnosis method based on multiscale time irreversibility and t-SNE manifold learning
    School of Mechanical Engineering, Anhui University of Technology, Maanshan
    243032, China
    J Vib Shock, 17 (61-68 and 84):
  • [22] Feature Extraction Method for Fault Diagnosis of Rotating Machinery Based on Wavelet and LLE
    Zhang, Guangtao
    Cheng, Yuanchu
    Wang, Xingfang
    Lu, Na
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 1181 - 1185
  • [23] COMPOSITE FAULT DIAGNOSIS IN ROTATING MACHINERY BASED ON MULTI-FEATURE FUSION
    Su, Nai-quan
    Zhang, Qing-hua
    Chen, Yi-dian
    Chang, Xiao-xiao
    Liu, Yang
    TRANSACTIONS OF FAMENA, 2024, 48 (01) : 87 - 96
  • [24] Fault Diagnosis of Rotating Machinery Based on FDR Feature Selection Algorithm and SVM
    Li, Sheng
    Zhang, Chunliang
    Yue, Xia
    MANUFACTURING ENGINEERING AND AUTOMATION I, PTS 1-3, 2011, 139-141 : 2506 - +
  • [25] A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images
    Jia, Zhen
    Liu, Zhenbao
    Vong, Chi-Man
    Pecht, Michael
    IEEE ACCESS, 2019, 7 : 12348 - 12359
  • [26] Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection
    Han, Dongying
    Liang, Kai
    Shi, Peiming
    JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) : 939 - 953
  • [27] Feature Extraction Based on Adaptive Multiwavelets and LTSA for Rotating Machinery Fault Diagnosis
    Lu, Na
    Zhang, Guangtao
    Xiao, Zhihuai
    Malik, Om Parkash
    SHOCK AND VIBRATION, 2019, 2019
  • [28] Domain adaptive fault diagnosis based on Transformer feature extraction for rotating machinery
    Huang X.
    Wu T.
    Yang L.
    Hu Y.
    Chai Y.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2022, 43 (11): : 210 - 218
  • [29] Fault diagnosis method of rotating machinery based on MSResNet feature fusion and CAM
    Du, Linhao
    JOURNAL OF VIBROENGINEERING, 2024, 26 (07) : 1600 - 1615
  • [30] Fault detection and diagnosis for rotating machinery: A model-based approach
    Abdel-Magied, MF
    Loparo, KA
    Lin, W
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 3291 - 3296