Intelligent fault diagnosis of rotating machinery based on deep learning with feature selection

被引:10
|
作者
Han, Dongying [1 ]
Liang, Kai [2 ]
Shi, Peiming [2 ]
机构
[1] Yanshan Univ, Sch Vehicles & Energy, Qinhuangdao, Hebei, Peoples R China
[2] Yanshan Univ, Sch Elect Engn, Qinhuangdao 006004, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; empirical mode decomposition; feature selection; denoising auto-encoder; deep learning;
D O I
10.1177/1461348419849279
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In the absence of a priori knowledge, manual feature selection is too blind to find the sensitive features which can effectively classify the different fault features. And it is difficult to obtain a large number of typical fault samples in practice to train the intelligent classifier. A novel intelligent fault diagnosis method based on feature selection and deep learning is proposed for rotating machine mechanical in the paper. In this method, the deep neural network is not only used for feature extraction but also for fault diagnosis. First, the deep neural network 1 is used to extract feature from the spectral signal of the original signal. In addition, the original vibration signal is decomposed to a series of intrinsic mode function components by empirical mode decomposition, and the statistical features of each intrinsic mode function component are extracted by the deep neural network 2 in time domain and frequency domain. Second, the extraction features of the original signal spectrum and the extraction features of each intrinsic mode function component are evaluated, respectively. After features evaluation, the selected sensitive features are combined together to construct a joint feature. Finally, the joint feature is put into the deep neural network 3 to realize the automatic recognition of different fault states of rotating machinery. The experimental results show that the method proposed in this paper which integrated time-domain, frequency-domain statistical characteristics, empirical mode decomposition, feature selection, and deep learning methods can obtain the fault information in detail and can select sensitive features from a large number of fault features. The method can reduce the network size, improve the mechanical fault diagnosis classification accuracy, and has strong robustness.
引用
收藏
页码:939 / 953
页数:15
相关论文
共 50 条
  • [1] Deep transfer learning strategy in intelligent fault diagnosis of rotating machinery
    Tang, Shengnan
    Ma, Jingtao
    Yan, Zhengqi
    Zhu, Yong
    Khoo, Boo Cheong
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 134
  • [2] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    [J]. MEASUREMENT, 2023, 206
  • [3] A review of the application of deep learning in intelligent fault diagnosis of rotating machinery
    Zhu, Zhiqin
    Lei, Yangbo
    Qi, Guanqiu
    Chai, Yi
    Mazur, Neal
    An, Yiyao
    Huang, Xinghua
    [J]. MEASUREMENT, 2023, 206
  • [4] Deep Learning-Based Intelligent Fault Diagnosis Methods Toward Rotating Machinery
    Tang, Shengnan
    Yuan, Shouqi
    Zhu, Yong
    [J]. IEEE ACCESS, 2020, 8 : 9335 - 9346
  • [5] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Xiang Li
    Wei Zhang
    Qian Ding
    Jian-Qiao Sun
    [J]. Journal of Intelligent Manufacturing, 2020, 31 : 433 - 452
  • [6] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    [J]. JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [7] Intelligent fault diagnosis of rotating machinery based on impact feature extraction
    Hu, Aijun
    Sun, Junhao
    Xing, Lei
    Xiang, Ling
    [J]. Hangkong Dongli Xuebao/Journal of Aerospace Power, 2023, 38 (12): : 2973 - 2981
  • [8] Fault Diagnosis of Rotating Machinery Based on Wasserstein Distance and Feature Selection
    Ferracuti, Francesco
    Freddi, Alessandro
    Monteriu, Andrea
    Romeo, Luca
    [J]. IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (03) : 1997 - 2007
  • [9] Application of Rotating Machinery Fault Diagnosis Based on Deep Learning
    Cui, Wei
    Meng, Guoying
    Wang, Aiming
    Zhang, Xinge
    Ding, Jun
    [J]. SHOCK AND VIBRATION, 2021, 2021
  • [10] A feature fusion deep belief network method for intelligent fault diagnosis of rotating machinery
    Jiang, Hongkai
    Shao, Haidong
    Chen, Xinxia
    Huang, Jiayang
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3513 - 3521