On the use of electrostatic force microscopy as a quantitative subsurface characterization technique: A numerical study

被引:14
|
作者
Riedel, C. [1 ,2 ,3 ,4 ]
Alegria, A. [1 ,5 ]
Schwartz, G. A. [5 ]
Arinero, R. [6 ]
Colmenero, J. [1 ,2 ,5 ]
Saenz, J. J. [2 ,3 ,4 ]
机构
[1] Fac Quim, Dept Fis Mat UPV EHU, San Sebastian 20080, Spain
[2] Donostia Int Phys Ctr, San Sebastian 20018, Spain
[3] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[4] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain
[5] Ctr Fis Mat CSIC UPV EHU, San Sebastian 20018, Spain
[6] Univ Montpellier 2, UMR CNRS 5214, IES, F-34095 Montpellier, France
关键词
CHARGE-CARRIERS; RESOLUTION;
D O I
10.1063/1.3608161
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a numerical study on the use of electrostatic force microscopy (EFM) as a non invasive subsurface characterization technique. We discuss the ability to resolve a buried object in a dielectric matrix considering two parameters: the detectability (i.e., signal superior to the noise) and the lateral resolution. The effects of the dielectric constant, thickness of the sample, and depth at which the object is buried are quantified. We show that the sensitivity reached in EFM permits to characterize subsurface objects in a dielectric matrix. We demonstrate that both lateral resolution and detectability decreases when the tip object distance increases. On the other hand, these two quantities increase with the dielectric constant of the matrix. A first step toward EFM tomography is proposed for objects creating non correlated signals. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3608161]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Subsurface measurement of nanostructures on GaAs by electrostatic force microscopy
    Yamada, Fumihiko
    Kamiya, Itaru
    APPLIED SURFACE SCIENCE, 2013, 271 : 131 - 135
  • [2] Quantitative characterization of dielectric properties of nanoparticles using electrostatic force microscopy
    Descoteaux, Marc
    Sunnerberg, Jacob P.
    Staii, Cristian
    AIP ADVANCES, 2020, 10 (11)
  • [3] Quantitative electrostatic force measurement and characterization based on oscillation amplitude using atomic force microscopy
    Wang, Kesheng
    Lu, Yijia
    Cheng, Jia
    Zhu, Xiaoying
    Ji, Linhong
    AIP ADVANCES, 2020, 10 (01)
  • [4] Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy
    Palleau, E.
    Ressier, L.
    Borowik, L.
    Melin, T.
    NANOTECHNOLOGY, 2010, 21 (22)
  • [5] Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples
    Riedel, C.
    Alegria, A.
    Schwartz, G. A.
    Colmenero, J.
    Saenz, J. J.
    NANOTECHNOLOGY, 2011, 22 (28)
  • [6] Subsurface characterization of carbon nanotubes in polymer composites via quantitative electric force microscopy
    Zhao, Minhua
    Gu, Xiaohong
    Lowther, Sharon E.
    Park, Cheol
    Jean, Y. C.
    Nguyen, Tinh
    NANOTECHNOLOGY, 2010, 21 (22)
  • [7] Subsurface atomic force microscopy: towards a quantitative understanding
    Verbiest, G. J.
    Simon, J. N.
    Oosterkamp, T. H.
    Rost, M. J.
    NANOTECHNOLOGY, 2012, 23 (14)
  • [8] ELECTROSTATIC CHARACTERIZATION OF BIOLOGICAL AND POLYMERIC SURFACES BY ELECTROSTATIC FORCE MICROSCOPY
    LENG, Y
    WILLIAMS, CC
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 1994, 93 : 335 - 341
  • [9] Quantitative electrostatic force microscopy with sharp silicon tips
    Fumagalli, L.
    Edwards, M. A.
    Gomila, G.
    NANOTECHNOLOGY, 2014, 25 (49)
  • [10] Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy
    El Khoury, D.
    Fedorenko, V.
    Castellon, J.
    Bechelany, M.
    Laurentie, J. -C.
    Balme, S.
    Frechette, M.
    Ramonda, M.
    Arinero, R.
    SCANNING, 2017,