On the use of electrostatic force microscopy as a quantitative subsurface characterization technique: A numerical study

被引:14
|
作者
Riedel, C. [1 ,2 ,3 ,4 ]
Alegria, A. [1 ,5 ]
Schwartz, G. A. [5 ]
Arinero, R. [6 ]
Colmenero, J. [1 ,2 ,5 ]
Saenz, J. J. [2 ,3 ,4 ]
机构
[1] Fac Quim, Dept Fis Mat UPV EHU, San Sebastian 20080, Spain
[2] Donostia Int Phys Ctr, San Sebastian 20018, Spain
[3] Univ Autonoma Madrid, Dept Fis Mat Condensada, E-28049 Madrid, Spain
[4] Univ Autonoma Madrid, Inst Nicolas Cabrera, E-28049 Madrid, Spain
[5] Ctr Fis Mat CSIC UPV EHU, San Sebastian 20018, Spain
[6] Univ Montpellier 2, UMR CNRS 5214, IES, F-34095 Montpellier, France
关键词
CHARGE-CARRIERS; RESOLUTION;
D O I
10.1063/1.3608161
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a numerical study on the use of electrostatic force microscopy (EFM) as a non invasive subsurface characterization technique. We discuss the ability to resolve a buried object in a dielectric matrix considering two parameters: the detectability (i.e., signal superior to the noise) and the lateral resolution. The effects of the dielectric constant, thickness of the sample, and depth at which the object is buried are quantified. We show that the sensitivity reached in EFM permits to characterize subsurface objects in a dielectric matrix. We demonstrate that both lateral resolution and detectability decreases when the tip object distance increases. On the other hand, these two quantities increase with the dielectric constant of the matrix. A first step toward EFM tomography is proposed for objects creating non correlated signals. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3608161]
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Hybrid shear force feedback/scanning quantitative phase microscopy applied to subsurface imaging
    Edward, Kert
    Farahi, Faramarz
    Hocken, Robert
    OPTICS EXPRESS, 2009, 17 (21): : 18408 - 18418
  • [42] Subsurface atomic force microscopy: towards a quantitative understanding (vol 23, 145704, 2012)
    Verbiest, G. J.
    Simon, J. N.
    Oosterkamp, T. H.
    Rost, M. J.
    NANOTECHNOLOGY, 2012, 23 (49)
  • [43] A study of ultrathin dielectric films by atomic and electrostatic force microscopy
    de Santo, MP
    Barberi, R
    Blinov, LM
    Palto, SP
    Yudin, SG
    MOLECULAR MATERIALS, 2000, 12 (04): : 329 - 345
  • [44] Atomic force microscopy as a quantitative technique: correlation between network model approach and experimental study
    Perrin, A
    Elaissari, A
    Theretz, A
    Chapot, A
    COLLOIDS AND SURFACES B-BIOINTERFACES, 1998, 11 (1-2) : 103 - 112
  • [45] Quantitative characterization of shear force regulation for scanning electrochemical microscopy
    Tefashe, Ushula Mengesha
    Wittstock, Gunther
    COMPTES RENDUS CHIMIE, 2013, 16 (01) : 7 - 14
  • [46] Quantitative nanofriction characterization of corrugated surfaces by atomic force microscopy
    Podestá, A
    Fantoni, G
    Milani, P
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (05): : 1228 - 1242
  • [47] Quantitative characterization of protein nanostructures using atomic force microscopy
    Segers-Nolten, Ine
    van der Werf, Kees
    van Raaij, Martijn
    Subramaniam, Vinod
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 6609 - 6612
  • [48] Electrostatic Force Microscopy of Nanofibers and Carbon Nanotubes: Quantitative Analysis Using Theory and Experiment
    Datta, Sujit Sankar
    Staii, Cristian
    Pinto, Nicholas J.
    Strachan, Douglas R.
    Johnson, A. T. Charlie
    NANOSCALE PHENOMENA IN FUNCTIONAL MATERIALS BY SCANNING PROBE MICROSCOPY, 2008, 1025
  • [49] Quantitative electrostatic force microscopy on heterogeneous nanoscale samples -: art. no. 154106
    Palacios-Lidón, E
    Abellán, J
    Colchero, J
    Munuera, C
    Ocal, C
    APPLIED PHYSICS LETTERS, 2005, 87 (15) : 1 - 3
  • [50] Length-based quantitative characterization of metallic and semiconducting single-wall carbon nanotubes using electrostatic force microscopy
    Khoris, Indra Memdi
    Kuwahara, Yuki
    Nasrin, Fahmida
    Yuge, Ryota
    Saito, Takeshi
    CARBON, 2024, 229