The geometry of fractional stable matchings and its applications

被引:95
|
作者
Teo, CP [1 ]
Sethuraman, J
机构
[1] Natl Univ Singapore, Fac Business Adm, Dept Decis Sci, Singapore 117548, Singapore
[2] MIT, Ctr Operat Res, Cambridge, MA 02139 USA
关键词
stable matching; linear programming; rounding; approximation algorithms;
D O I
10.1287/moor.23.4.874
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the classical stable marriage and stable roommates problems using a polyhedral approach. We propose a new LP formulation for the stable roommates problem, which has a feasible solution if and only if the underlying roommates problem has a stable matching. Furthermore, for certain special weight functions on the edges, we construct a a-approximation algorithm for the optimal stable roommates problem. Our technique exploits features of the geometry of fractional solutions of this formulation. For the stable marriage problem, we show that a related geometry allows us to express any fractional solution in the stable marriage polytope as a convex combination of stable marriage solutions. This also leads to a genuinely simple proof of the integrality of the stable marriage polytope.
引用
收藏
页码:874 / 891
页数:18
相关论文
共 50 条
  • [31] Stable schedule matchings
    Komornik, V.
    Komornik, Zs
    Viauroux, C. K.
    ACTA MATHEMATICA HUNGARICA, 2012, 135 (1-2) : 67 - 79
  • [32] Jointly stable matchings
    Shuichi Miyazaki
    Kazuya Okamoto
    Journal of Combinatorial Optimization, 2019, 38 : 646 - 665
  • [33] Essentially stable matchings
    Troyan, Peter
    Delacretaz, David
    Kloosterman, Andrew
    GAMES AND ECONOMIC BEHAVIOR, 2020, 120 : 370 - 390
  • [34] The dynamics of stable matchings and half-matchings for the stable marriage and roommates problems
    Péter Biró
    Katarína Cechlárová
    Tamás Fleiner
    International Journal of Game Theory, 2008, 36 : 333 - 352
  • [35] Saturating stable matchings
    Maaz, Muhammad
    OPERATIONS RESEARCH LETTERS, 2021, 49 (04) : 597 - 601
  • [36] Jointly stable matchings
    Miyazaki, Shuichi
    Okamoto, Kazuya
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 646 - 665
  • [37] Conditional stable matchings
    Vilmos Komornik
    Christelle K. Viauroux
    Acta Scientiarum Mathematicarum, 2013, 79 (3-4): : 715 - 731
  • [38] The dynamics of stable matchings and half-matchings for the stable marriage and roommates problems
    Biro, Peter
    Cechlarova, Katarina
    Fleiner, Tamas
    INTERNATIONAL JOURNAL OF GAME THEORY, 2008, 36 (3-4) : 333 - 352
  • [39] FRACTIONAL COVERS FOR FORESTS AND MATCHINGS
    PADBERG, MW
    WOLSEY, LA
    MATHEMATICAL PROGRAMMING, 1984, 29 (01) : 1 - 14
  • [40] On the existence of stable matchings with contractsOn the existence of stable matchings with contractsY. Yang
    Yi-You Yang
    Theory and Decision, 2025, 98 (3) : 367 - 372