Jointly stable matchings

被引:0
|
作者
Shuichi Miyazaki
Kazuya Okamoto
机构
[1] Kyoto University,Academic Center for Computing and Media Studies
[2] Kyoto University Hospital,Division of Medical Information Technology and Administration Planning
来源
Journal of Combinatorial Optimization | 2019年 / 38卷
关键词
Stable marriage problem; Stable matching; NP-completeness; Linear time algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In the stable marriage problem, we are given a set of men, a set of women, and each person’s preference list. Our task is to find a stable matching, that is, a matching admitting no unmatched (man, woman)-pair each of which improves the situation by being matched together. It is known that any instance admits at least one stable matching. In this paper, we consider a natural extension where k(≥2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k (\ge 2)$$\end{document} sets of preference lists Li\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{i}$$\end{document} (1≤i≤k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le i \le k$$\end{document}) over the same set of people are given, and the aim is to find a jointly stable matching, a matching that is stable with respect to all Li\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{i}$$\end{document}. We show that the decision problem is NP-complete for the following two restricted cases; (1) k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and each person’s preference list is of length at most four, and (2) k=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=4$$\end{document}, each man’s preference list is of length at most three, and each woman’s preference list is of length at most four. On the other hand, we show that it is solvable in linear time for any k if each man’s preference list is of length at most two (women’s lists can be of unbounded length). We also show that if each woman’s preference lists are same in all Li\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{i}$$\end{document}, then the problem can be solved in linear time.
引用
收藏
页码:646 / 665
页数:19
相关论文
共 50 条
  • [1] Jointly stable matchings
    Miyazaki, Shuichi
    Okamoto, Kazuya
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 646 - 665
  • [2] STABLE MATCHINGS AND STABLE PARTITIONS
    TAN, JJM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1991, 39 (1-2) : 11 - 20
  • [3] TRANSFORMATION FROM ARBITRARY MATCHINGS TO STABLE MATCHINGS
    TAMURA, A
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (02) : 310 - 323
  • [4] UNDERSTANDING POPULAR MATCHINGS VIA STABLE MATCHINGS
    Cseh, Agnes
    Faenza, Yuri
    Kavitha, Telikepalli
    Powers, Vladlena
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 188 - 213
  • [5] Characterization of Dynamics of Stable Matchings: Attractors Mapped from Stable Matchings
    Ishida, Yoshiteru
    Sato, Takumi
    17TH INTERNATIONAL CONFERENCE IN KNOWLEDGE BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS - KES2013, 2013, 22 : 672 - 679
  • [6] Unique stable matchings
    Gutin, Gregory Z.
    Neary, Philip R.
    Yeo, Anders
    GAMES AND ECONOMIC BEHAVIOR, 2023, 141 : 529 - 547
  • [7] Random stable matchings
    Mertens, S
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 141 - 152
  • [8] Stable Noncrossing Matchings
    Ruangwises, Suthee
    Itoh, Toshiya
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 405 - 416
  • [9] On a characterization of stable matchings
    Adachi, H
    ECONOMICS LETTERS, 2000, 68 (01) : 43 - 49
  • [10] Stable Matchings in Trees
    Tayu, Satoshi
    Ueno, Shuichi
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 492 - 503