Observation of Kuznetsov-Ma soliton dynamics in optical fibre

被引:378
|
作者
Kibler, B. [2 ]
Fatome, J. [2 ]
Finot, C. [2 ]
Millot, G. [2 ]
Genty, G. [3 ]
Wetzel, B. [1 ]
Akhmediev, N. [4 ]
Dias, F. [5 ]
Dudley, J. M. [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, UMR CNRS 6174, F-25030 Besancon, France
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, UMR CNRS 6303, Dijon, France
[3] Tampere Univ Technol, Opt Lab, FI-33101 Tampere, Finland
[4] Australian Natl Univ, Opt Sci Grp, Res Sch Phys & Engn, Inst Adv Studies, Canberra, ACT 0200, Australia
[5] Natl Univ Ireland Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
基金
澳大利亚研究理事会; 欧洲研究理事会; 芬兰科学院;
关键词
PEREGRINE SOLITON; MODULATION INSTABILITY; WATER-WAVES; EVOLUTION; EQUATIONS;
D O I
10.1038/srep00463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Schrodinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important series of experiments that have now observed a complete family of soliton on background solutions to the NLSE. Our results also show that KM dynamics appear more universally than for the specific conditions originally considered, and can be interpreted as an analytic description of Fermi-Pasta-Ulam recurrence in NLSE propagation.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Akhmediev Breathers and Kuznetsov-Ma Solitons in the Cubic-Quintic Nonlinear Schrodinger Equation
    Pan, Changchang
    Wu, Gangzhou
    Zhang, Lei
    Zhang, Huicong
    IEEE PHOTONICS JOURNAL, 2024, 16 (05):
  • [32] Shallow-Water Wave Dynamics: Butterfly Waves, X-Waves, Multiple-Lump Waves, Rogue Waves, Stripe Soliton Interactions, Generalized Breathers, and Kuznetsov-Ma Breathers
    Ahmed, Sarfaraz
    Rehman, Ujala
    Fei, Jianbo
    Khalid, Muhammad Irslan
    Chen, Xiangsheng
    FRACTAL AND FRACTIONAL, 2025, 9 (01)
  • [33] On the discrete Kuznetsov-Ma solutions for the defocusing Ablowitz-Ladik equation with large background amplitude
    Boadi, E. C.
    Charalampidis, E. G.
    Kevrekidis, P. G.
    Ossi, N. J.
    Prinari, B.
    WAVE MOTION, 2025, 134
  • [34] Superposed Kuznetsov-Ma solitons in a two-dimensional graded-index grating waveguide
    Dai, Chao-Qing
    Zhu, Hai-Ping
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (12) : 3291 - 3297
  • [35] Akhmediev and Kuznetsov-Ma rogue wave clusters of the higher-order nonlinear Schrödinger equation
    Nikolic, Stanko N.
    Aleksic, Najdan B.
    Belic, Milivoj R.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [36] Combined Akhmediev breather and Kuznetsov-Ma solitons in a two-dimensional graded-index waveguide
    Zhu, Hai-Ping
    Pan, Zhen-Huan
    LASER PHYSICS, 2014, 24 (04)
  • [37] 基于谱过滤方法的Kuznetsov-Ma孤子向准基态孤子转化研究
    杨光晔
    李禄
    田晋平
    光学学报, 2016, 36 (06) : 245 - 250
  • [38] Study of Sasa-Satsuma dynamical system for Kuznetsov-Ma and generalized breathers, lump, periodic and rogue wave solutions
    Seadawy, Aly R.
    Rizvi, Syed T. R.
    Batool, Tahira
    Ashraf, Romana
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022,
  • [39] Lump solutions, Kuznetsov-Ma breathers, rogue waves and interaction solutions for magneto electro-elastic circular rod
    Seadawy, Aly R.
    Rizvi, Syed T. R.
    Ahmed, Sarfaraz
    Bashir, Azhar
    CHAOS SOLITONS & FRACTALS, 2022, 163
  • [40] SOLITON INTERACTION OF THE ZAKHAROV-KUZNETSOV EQUATIONS IN PLASMA DYNAMICS
    Zhen, Hui-Ling
    Tian, Bo
    Wang, Pan
    Liu, Rong-Xiang
    Zhong, Hui
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (09):