Observation of Kuznetsov-Ma soliton dynamics in optical fibre

被引:378
|
作者
Kibler, B. [2 ]
Fatome, J. [2 ]
Finot, C. [2 ]
Millot, G. [2 ]
Genty, G. [3 ]
Wetzel, B. [1 ]
Akhmediev, N. [4 ]
Dias, F. [5 ]
Dudley, J. M. [1 ]
机构
[1] Univ Franche Comte, Inst FEMTO ST, UMR CNRS 6174, F-25030 Besancon, France
[2] Univ Bourgogne, Lab Interdisciplinaire Carnot Bourgogne, UMR CNRS 6303, Dijon, France
[3] Tampere Univ Technol, Opt Lab, FI-33101 Tampere, Finland
[4] Australian Natl Univ, Opt Sci Grp, Res Sch Phys & Engn, Inst Adv Studies, Canberra, ACT 0200, Australia
[5] Natl Univ Ireland Univ Coll Dublin, Sch Math Sci, Dublin 4, Ireland
来源
SCIENTIFIC REPORTS | 2012年 / 2卷
基金
澳大利亚研究理事会; 欧洲研究理事会; 芬兰科学院;
关键词
PEREGRINE SOLITON; MODULATION INSTABILITY; WATER-WAVES; EVOLUTION; EQUATIONS;
D O I
10.1038/srep00463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Schrodinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important series of experiments that have now observed a complete family of soliton on background solutions to the NLSE. Our results also show that KM dynamics appear more universally than for the specific conditions originally considered, and can be interpreted as an analytic description of Fermi-Pasta-Ulam recurrence in NLSE propagation.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Kuznetsov-Ma rogue wave clusters of the nonlinear Schrodinger equation
    Alwashahi, Sarah
    Aleksic, Najdan B.
    Belic, Milivoj R.
    Nikolic, Stanko N.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12495 - 12509
  • [22] A Study of the Behavioral Controllability for Superposed Kuznetsov-Ma Soliton of the (3+1)-Dimensional Generalized Nonlinear Schrodinger Equation
    Zhu Hai-Ping
    Chen Li
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (04) : 495 - 500
  • [23] Kuznetsov-Ma waves train generation in a left-handed material
    Atangana, Jacques
    Essama, Bedel Giscard Onana
    Biya-Motto, Frederick
    Mokhtari, Bouchra
    Eddeqaqi, Noureddine Cherkaoui
    Kofane, Timoleon Crepin
    JOURNAL OF MODERN OPTICS, 2015, 62 (05) : 392 - 402
  • [24] Vector combined and crossing Kuznetsov-Ma solitons in -symmetric coupled waveguides
    Li, Ji-tao
    Zhu, Yu
    Liu, Quan-tao
    Han, Jin-zhong
    Wang, Yue-yue
    Dai, Chao-qing
    NONLINEAR DYNAMICS, 2016, 85 (02) : 973 - 980
  • [25] Kuznetsov-Ma Breather in Two-Temperature-Ion Dusty Plasma
    Ding, Fei-Yun
    Chen, Yu-Xi
    Li, Fei-Fei
    Duan, Wen-Shan
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, : 5266 - 5271
  • [26] Nonlinear tunnelling effect of combined Kuznetsov-Ma soliton in (3+1)-dimensional -symmetric inhomogeneous nonlinear couplers with gain and loss
    Chen, Yi-Xiang
    Jiang, Yun-Feng
    Xu, Zhou-Xiang
    Xu, Fang-Qian
    NONLINEAR DYNAMICS, 2015, 82 (1-2) : 589 - 597
  • [27] Ultraslow Kuznetsov-Ma solitons and Ahkmediev breathers in a cold three-state medium exposed to nanosecond optical pulses
    Wang, Wanwan
    Bu, Lili
    Cheng, Dandan
    Ye, Yanlin
    Chen, Shihua
    Baronio, Fabio
    OSA CONTINUUM, 2021, 4 (05): : 1488 - 1496
  • [28] Adiabatic modulation of cnoidal wave by Kuznetsov - Ma soliton
    Makarov, V. A.
    Petnikova, V. M.
    Shuvalov, V. V.
    V INTERNATIONAL CONFERENCE OF PHOTONICS AND INFORMATION OPTICS, 2016, 737
  • [29] Akhmediev breathers, Peregrine solitons and Kuznetsov-Ma solitons in optical fibers and PCF by Laplace-Adomian decomposition method
    Gonzalez-Gaxiola, O.
    Biswas, Anjan
    OPTIK, 2018, 172 : 930 - 939
  • [30] Floquet analysis of Kuznetsov-Ma breathers: A path towards spectral stability of rogue waves
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Karachalios, N. I.
    Haragus, M.
    James, G.
    PHYSICAL REVIEW E, 2017, 96 (01)