All Scale-Free Networks Are Sparse

被引:107
|
作者
Del Genio, Charo I. [1 ]
Gross, Thilo [1 ]
Bassler, Kevin E. [2 ,3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Houston, Dept Phys, Houston, TX 77204 USA
[3] Univ Houston, Houston Sci Ctr 202, Texas Ctr Superconduct, Houston, TX 77204 USA
关键词
1ST-ORDER PHASE-TRANSITIONS; COMPLEX NETWORKS; INTERNET; WEB;
D O I
10.1103/PhysRevLett.107.178701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the realizability of scale-free networks with a given degree sequence, showing that the fraction of realizable sequences undergoes two first-order transitions at the values 0 and 2 of the power-law exponent. We substantiate this finding by analytical reasoning and by a numerical method, proposed here, based on extreme value arguments, which can be applied to any given degree distribution. Our results reveal a fundamental reason why large scale-free networks without constraints on minimum and maximum degree must be sparse.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] The modeling of scale-free networks
    Chen, QH
    Shi, DH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 335 (1-2) : 240 - 248
  • [22] Noisy scale-free networks
    Scholz, J
    Dejori, M
    Stetter, M
    Greiner, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 350 (2-4) : 622 - 642
  • [23] Complex scale-free networks
    Jeong, H
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) : 226 - 237
  • [24] Classification of scale-free networks
    Goh, KI
    Oh, E
    Jeong, H
    Kahng, B
    Kim, D
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) : 12583 - 12588
  • [25] Are RNA networks scale-free?
    P. Clote
    Journal of Mathematical Biology, 2020, 80 : 1291 - 1321
  • [26] Analyzing and learning sparse and scale-free networks using Gaussian graphical models
    Aslan M.S.
    Chen X.-W.
    Cheng H.
    International Journal of Data Science and Analytics, 2016, 1 (2) : 99 - 109
  • [27] Scale-free networks are rare
    Broido, Anna D.
    Clauset, Aaron
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [28] Deterministic scale-free networks
    Barabási, AL
    Ravasz, E
    Vicsek, T
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 299 (3-4) : 559 - 564
  • [29] Scale-free networks are ultrasmall
    Cohen, R
    Havlin, S
    PHYSICAL REVIEW LETTERS, 2003, 90 (05)
  • [30] Will Scale-Free Popularity Develop Scale-Free Geo-Social Networks?
    Liu, Dong
    Fodor, Viktoria
    Rasmussen, Lars Kildehoj
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (03): : 587 - 598