A High-Availability K-modes Clustering Method Based on Differential Privacy

被引:1
|
作者
Zhang, Shaobo [1 ,2 ,3 ]
Yuan, Liujie [1 ,2 ]
Li, Yuxing [1 ,2 ]
Chen, Wenli [1 ,2 ]
Ding, Yifei [1 ,2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Comp Sci & Engn, Xiangtan 411201, Peoples R China
[2] Hunan Key Lab Serv Comp & New Software Serv Techn, Xiangtan 411201, Peoples R China
[3] Natl Univ Def Technol, Coll Comp, Key Lab Software Engn Complex Syst, Changsha 410073, Peoples R China
关键词
Privacy protection; Categorical data mining; Differential privacy; K-modes clustering; ALGORITHM;
D O I
10.1007/978-3-030-95388-1_18
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In categorical data mining, the K-modes algorithm is a classic algorithm that has been widely used. However, the data analyzed by the K-modes algorithm usually contains sensitive user information. If these data are leaked, it will seriously threaten the privacy of users. In response to this problem, the existing method that combines differential privacy with the K-modes algorithm can effectively prevent privacy leakage. Nevertheless, differential privacy adds noise to the data while protecting data privacy, which will reduce the availability of clustering results. In this paper, we propose a high-availability K-modes clustering mechanism based on differential privacy(HAKC). In this mechanism, based on the use of differential privacy to protect data privacy, we select the initial centroid of the clustering by calculation, and improve the calculation method of the distance between the data point and the centroid in the iterative process.
引用
下载
收藏
页码:274 / 283
页数:10
相关论文
共 50 条
  • [21] Attribute weights-based clustering centres algorithm for initialising K-modes clustering
    Liwen Peng
    Yongguo Liu
    Cluster Computing, 2019, 22 : 6171 - 6179
  • [22] Attribute weights-based clustering centres algorithm for initialising K-modes clustering
    Peng, Liwen
    Liu, Yongguo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 3): : S6171 - S6179
  • [23] A Modified Initialization Method to Find an Initial Center for Fuzzy K-Modes Clustering
    Saranya, S.
    Jayanthi, P.
    2017 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TECHNIQUES IN CONTROL, OPTIMIZATION AND SIGNAL PROCESSING (INCOS), 2017,
  • [24] A Global K-modes Algorithm for Clustering Categorical Data
    Bai Tian
    Kulikowski, C. A.
    Gong Leiguang
    Yang Bin
    Huang Lan
    Zhou Chunguang
    CHINESE JOURNAL OF ELECTRONICS, 2012, 21 (03): : 460 - 465
  • [25] An efficient k-modes algorithm for clustering categorical datasets
    Dorman, Karin S.
    Maitra, Ranjan
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (01) : 83 - 97
  • [26] A fuzzy k-modes algorithm for clustering categorical data
    Huang, ZX
    Ng, MK
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7 (04) : 446 - 452
  • [27] A genetic k-modes algorithm for clustering categorical data
    Gan, GJ
    Yang, ZJ
    Wu, JH
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 195 - 202
  • [28] Clustering categorical data: Soft rounding k-modes
    Gavva, Surya Teja
    Karthik, C. S.
    Punna, Sharath
    INFORMATION AND COMPUTATION, 2024, 296
  • [29] On the impact of dissimilarity measure in k-modes clustering algorithm
    Ng, Michael K.
    Li, Mark Junjie
    Huang, Joshua Zhexue
    He, Zengyou
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (03) : 503 - 507
  • [30] Feature-Weighted Fuzzy K-Modes Clustering
    Nataliani, Yessica
    Yang, Miin-Shen
    2019 3RD INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE (ISMSI 2019), 2019, : 63 - 68