Asymptotic distribution of regression M-estimators

被引:12
|
作者
Arcones, MA [1 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
regression; robustness; m-estimators; L-p estimators;
D O I
10.1016/S0378-3758(00)00224-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the following linear regression model: Y-i = Z(i)' theta (0) + U-i, i = 1, ..., n, where {U-i}(i=1)(infinity) is a sequence of R-m-valued i.i.d. r.v.'s; {Z(i)}(i=1)(infinity) is a sequence of i.i.d. d x m random matrices; and theta (0) is a d-dimensional parameter to be estimated. Given a function rho : R-m --> R, we define a robust estimator <(<theta>)over cap>(n), as a value such that n(-1) Sigma (n)(i=1) rho (Y-i - Z(i)'<(<theta>)over cap>(n)) = inf(theta is an element of Rd) n(-1) Sigma (n)(i=1) rho (Y-i - Z(i)' theta). We study the convergence in distribution of a(n)(<(<theta>)over cap>(n) - theta (0)) in different situations, where {a(n)} is a sequence of real numbers depending on rho and on the distributions of Z(i) and U-i. As a particular case, we consider the case rho (x)= \x \ (p). In this case, we show that if E[parallel toZ parallel to (p) + parallel toZ parallel to (2)] < infinity; either p > 1/2 or m greater than or equal to 2; and same other regularity conditions hold, then n(1/2)(<(<theta>)over cap>(n) - theta (0)) converges in distribution to a normal limit. For m = 1 and p = 1/2, n(1/2)(log n)(-1/2)(<(<theta>)over cap>(n) - theta (0)) converges in distribution to a normal limit. For m = 1 and 1/2 > p > 0, n(1/(3 - 2p))(<(<theta>)over cap>(n) - theta (0)) converges in distribution. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 261
页数:27
相关论文
共 50 条
  • [1] Characterization of the asymptotic distribution of semiparametric M-estimators
    Ichimura, Hidehiko
    Lee, Sokbae
    [J]. JOURNAL OF ECONOMETRICS, 2010, 159 (02) : 252 - 266
  • [2] M-estimators for isotonic regression
    Alvarez, Enrique E.
    Yohai, Victor J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (08) : 2351 - 2368
  • [3] Asymptotic properties of M-estimators in linear and nonlinear multivariate regression models
    Withers, Christopher S.
    Nadarajah, Saralees
    [J]. METRIKA, 2014, 77 (05) : 647 - 673
  • [4] On the strong consistency of asymptotic M-estimators
    Chafai, Djalil
    Concordet, Didier
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (09) : 2774 - 2783
  • [5] Asymptotic theory for M-estimators of boundaries
    Knight, Keith
    [J]. Art of Semiparametrics, 2006, : 1 - 21
  • [6] The bias and skewness of M-estimators in regression
    Withers, Christopher
    Nadarajah, Saralees
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1 - 14
  • [7] Regression clustering with redescending M-estimators
    Garlipp, T
    Müller, CH
    [J]. INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 38 - 45
  • [8] ASYMPTOTIC PROPERTIES OF ONE-STEP WEIGHTED M-ESTIMATORS WITH APPLICATIONS TO REGRESSION
    Linke, Yu Yu
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2018, 62 (03) : 373 - 398
  • [9] M-Estimators for Regression with Changing Scale
    Withers, Christopher S.
    Nadarajah, Saralees
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2016, 78 : 238 - 286
  • [10] Asymptotic linear expansion of regularized M-estimators
    Tino Werner
    [J]. Annals of the Institute of Statistical Mathematics, 2022, 74 : 167 - 194