M-Estimators for Regression with Changing Scale

被引:0
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Ind Res Ltd, Lower Hutt, New Zealand
[2] Univ Manchester, Manchester M13 9PL, Lancs, England
关键词
M-estimator; Regression; Robust; Trend in scale;
D O I
10.1007/s13571-016-0122-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
M-estimation provides a class of estimators for the 'signal plus noise' problem, where the signal has a parametric form and the distribution of the noise is unspecified. Here, we extend this to modeling observations subject to trends in both location and scale, that is, to the model observation = (location signal) + (scale signal) x (noise), where the location signal and scale signal are smooth functions of an unknown q-vector theta say, and the components of the noise have some unknown cumulative distribution function (cdf) F say. We define the scaled M-estimator of. with respect to a given smooth function rho : R -> R. When the scale is not changing this reduces to the usual unscaled M-estimator requiring that F be suitably centered with respect to rho.
引用
收藏
页码:238 / 286
页数:49
相关论文
共 50 条
  • [1] M-estimators for isotonic regression
    Alvarez, Enrique E.
    Yohai, Victor J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (08) : 2351 - 2368
  • [2] The bias and skewness of M-estimators in regression
    Withers, Christopher
    Nadarajah, Saralees
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2010, 4 : 1 - 14
  • [3] Asymptotic distribution of regression M-estimators
    Arcones, MA
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 97 (02) : 235 - 261
  • [4] Regression clustering with redescending M-estimators
    Garlipp, T
    Müller, CH
    [J]. INNOVATIONS IN CLASSIFICATION, DATA SCIENCE, AND INFORMATION SYSTEMS, 2005, : 38 - 45
  • [5] A NEW SCALE STEP FOR HUBER M-ESTIMATORS IN MULTIPLE-REGRESSION
    RIVEST, LP
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (01): : 164 - 169
  • [6] M-ESTIMATORS AND GNOSTICAL ESTIMATORS FOR IDENTIFICATION OF A REGRESSION-MODEL
    NOVOVICOVA, J
    [J]. AUTOMATICA, 1990, 26 (03) : 607 - 610
  • [7] ROBUST REGRESSION TREES BASED ON M-ESTIMATORS
    Galimberti, G.
    Pillati, M.
    Soffritti, G.
    [J]. STATISTICA, 2007, 67 (02): : 173 - 190
  • [8] Regression M-estimators with doubly censored data
    Ren, JJ
    Gu, MG
    [J]. ANNALS OF STATISTICS, 1997, 25 (06): : 2638 - 2664
  • [9] A review on robust M-estimators for regression analysis
    de Menezes, D. Q. F.
    Prata, D. M.
    Secchi, A. R.
    Pinto, J. C.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2021, 147
  • [10] Optimal bounded influence regression and scale M-estimators in the context of experimental design
    Bednarski, T
    Müller, CH
    [J]. STATISTICS, 2001, 35 (04) : 349 - 369