Asymptotic distribution of regression M-estimators

被引:12
|
作者
Arcones, MA [1 ]
机构
[1] SUNY Binghamton, Dept Math Sci, Binghamton, NY 13902 USA
关键词
regression; robustness; m-estimators; L-p estimators;
D O I
10.1016/S0378-3758(00)00224-X
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the following linear regression model: Y-i = Z(i)' theta (0) + U-i, i = 1, ..., n, where {U-i}(i=1)(infinity) is a sequence of R-m-valued i.i.d. r.v.'s; {Z(i)}(i=1)(infinity) is a sequence of i.i.d. d x m random matrices; and theta (0) is a d-dimensional parameter to be estimated. Given a function rho : R-m --> R, we define a robust estimator <(<theta>)over cap>(n), as a value such that n(-1) Sigma (n)(i=1) rho (Y-i - Z(i)'<(<theta>)over cap>(n)) = inf(theta is an element of Rd) n(-1) Sigma (n)(i=1) rho (Y-i - Z(i)' theta). We study the convergence in distribution of a(n)(<(<theta>)over cap>(n) - theta (0)) in different situations, where {a(n)} is a sequence of real numbers depending on rho and on the distributions of Z(i) and U-i. As a particular case, we consider the case rho (x)= \x \ (p). In this case, we show that if E[parallel toZ parallel to (p) + parallel toZ parallel to (2)] < infinity; either p > 1/2 or m greater than or equal to 2; and same other regularity conditions hold, then n(1/2)(<(<theta>)over cap>(n) - theta (0)) converges in distribution to a normal limit. For m = 1 and p = 1/2, n(1/2)(log n)(-1/2)(<(<theta>)over cap>(n) - theta (0)) converges in distribution to a normal limit. For m = 1 and 1/2 > p > 0, n(1/(3 - 2p))(<(<theta>)over cap>(n) - theta (0)) converges in distribution. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:235 / 261
页数:27
相关论文
共 50 条
  • [21] EDGEWORTH EXPANSIONS FOR M-ESTIMATORS OF A REGRESSION PARAMETER
    LAHIRI, SN
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1992, 43 (01) : 125 - 132
  • [22] Robust regression with projection based M-estimators
    Chen, HF
    Meer, P
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 878 - 885
  • [23] A NOTE ON THE UNIQUENESS OF M-ESTIMATORS IN ROBUST REGRESSION
    CRISP, A
    BURRIDGE, J
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (02): : 205 - 208
  • [24] UPPER BOUNDS ON ASYMPTOTIC VARIANCES OF M-ESTIMATORS OF LOCATION
    COLLINS, JR
    [J]. ANNALS OF STATISTICS, 1977, 5 (04): : 646 - 657
  • [25] Asymptotic normality of the recursive M-estimators of the scale parameters
    Miao, Baiqi
    Wu, Yuehua
    Liu, Donghai
    Tong, Qian
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2007, 59 (02) : 367 - 384
  • [26] Asymptotic properties of one-step M-estimators
    Linke, Yuliana
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (16) : 4096 - 4118
  • [27] Asymptotic normality of robust M-estimators with convex penalty
    Bellec, Pierre C.
    Shen, Yiwei
    Zhang, Cun-Hui
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 5591 - 5622
  • [28] Asymptotic theory for M-estimators over a convex kernel
    Arcones, MA
    [J]. ECONOMETRIC THEORY, 1998, 14 (04) : 387 - 422
  • [29] Asymptotic properties of weighted M-estimators for clustered data
    El Asri, Mohammed
    [J]. COMPTES RENDUS MATHEMATIQUE, 2013, 351 (11-12) : 491 - 493
  • [30] Asymptotic Normality of the Recursive M-estimators of the Scale Parameters
    Baiqi Miao
    Yuehua Wu
    Donghai Liu
    Qian Tong
    [J]. Annals of the Institute of Statistical Mathematics, 2007, 59 : 367 - 384