Study of ion transmission for a linear mode Bradbury-Nielsen gate in ion mobility spectrometer

被引:5
|
作者
Ni, Kai [1 ]
Guo, Jingran [1 ]
Ou, Guangli [1 ]
Zhang, Xiaoguo [1 ]
Yu, Quan [1 ]
Qian, Xiang [1 ]
Wang, Xiaohao [1 ,2 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Div Adv Mfg, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, State Key Lab Precis Measure Technol & Instrument, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Ion mobility spectrometer; Bradbury-Nielsen gate; Ion transmission; Quantitatively control; Fourier transform; IONIZATION; RESOLUTION; SIMION;
D O I
10.1016/j.ijms.2014.12.012
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
Fourier transform ion mobility spectrometer (FT-IMS) has the advantage of high ion utilization efficiency. Its two ion gates work in binary switch mode with square wave modulation function, which causes interference from high order scaled versions of the original spectrum. This problem can be avoided by using cosine modulation function, which requires the ion gates working in linear mode by quantitatively controlling its transmission in real time. In this paper, the influence of the structure parameters of Bradbury-Nielsen gate (BNG) and the electrical parameters on the ion transmission is investigated by SIMION simulation and experiment. The results show that the transmission in the open state is determined by the mechanical aperture ratio, and in the transition state is determined by the electric field ratio. In practical, the ion transmission can be quantitatively controlled by simply adjusting the voltage difference between adjacent wires when in the transition state. The nonlinearity between the transmission and the control voltage can be corrected by a simple calibration. This job proves the possibility of implementing a linear mode BNG, which can be used in further to improve the precision of the FT-IMS. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 50 条
  • [31] Development and characterization of ion mobility spectrometer
    Soriano J.K.T.
    Torii T.
    Lacdan M.C.C.
    Wada M.
    Plasma and Fusion Research, 2019, 14
  • [32] A novel Laser Ion Mobility Spectrometer
    Goebel, J.
    Kessler, M.
    Langmeier, A.
    OLFACTION AND ELECTRONIC NOSE, PROCEEDINGS, 2009, 1137 : 253 - 256
  • [33] Development and Characterization of Ion Mobility Spectrometer
    Soriano, Joey Kim T.
    Torii, Takashi
    Lacdan, Ma Camille C.
    Wada, Motoi
    PLASMA AND FUSION RESEARCH, 2019, 14
  • [34] Negative ion formation in laser ion mobility increment spectrometer
    G. E. Kotkovskii
    A. V. Tugaenko
    A. A. Chistyakov
    Technical Physics Letters, 2010, 36 : 276 - 278
  • [35] ION DISTRIBUTION PROFILES IN THE DRIFT REGION OF AN ION MOBILITY SPECTROMETER
    KARPAS, Z
    EICEMAN, GA
    EWING, RG
    ALGOM, A
    AVIDA, R
    FRIEDMAN, M
    MATMOR, A
    SHAHAL, O
    INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, 1993, 127 : 95 - 104
  • [36] An ion-focusing aspiration condenser as an ion mobility spectrometer
    Zimmermann, Stefan
    Abel, Nora
    Baether, Wolfgang
    Barth, Sebastian
    SENSORS AND ACTUATORS B-CHEMICAL, 2007, 125 (02) : 428 - 434
  • [37] Negative ion formation in laser ion mobility increment spectrometer
    Kotkovskii, G. E.
    Tugaenko, A. V.
    Chistyakov, A. A.
    TECHNICAL PHYSICS LETTERS, 2010, 36 (03) : 276 - 278
  • [38] An Ion Gating Strategy for a Miniaturized Planar Ion Mobility Spectrometer
    Chiarot, Paul R.
    Sullivan, Pierre
    Ben Mrad, Ridha
    IECON 2010 - 36TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2010,
  • [39] Ion storage biases in the ion funnel trap of a Hybrid ion mobility spectrometer/time of flight mass spectrometer
    Li, Junhui
    Liu, Rong
    Gao, Wenqing
    Yu, Jiancheng
    Tang, Keqi
    TALANTA, 2023, 260
  • [40] Ion Mobility Spectrometer-Fragmenter-Ion Mobility Spectrometer Analogue of a Triple Quadrupole for High-Resolution Ion Analysis at Atmospheric Pressure
    Amo-Gonzalez, Mario
    Carnicero, Irene
    Perez, Sergio
    Delgado, Rafael
    Eiceman, Gary A.
    Fernandez de la Mora, Gonzalo
    de la Mora, Juan Fernandez
    ANALYTICAL CHEMISTRY, 2018, 90 (11) : 6885 - 6892