dc conductivity of two-temperature warm dense gold

被引:25
|
作者
Ng, A. [1 ]
Sterne, P. [2 ]
Hansen, S. [3 ]
Recoules, V. [4 ]
Chen, Z. [5 ]
Tsui, Y. Y. [5 ]
Wilson, B. [2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Sandia Natl Labs, Albuquerque, NM 87123 USA
[4] CEA, DAM, DIF, F-91297 Arpajon, France
[5] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
STRONGLY COUPLED PLASMA; ELECTRICAL-RESISTIVITY MEASUREMENTS; OPTICAL-PROPERTIES; NOBLE-METALS; ALUMINUM; THERMALIZATION; CONSTANTS; SYSTEMS; COPPER; AU;
D O I
10.1103/PhysRevE.94.033213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using recently obtained ac conductivity data we have derived dc conductivity together with free electron density and electron momentum relaxation time in two-temperature warm dense gold with energy density up to 4.1 MJ/kg (0.8 x 10(11) J/m(3)). The derivation is based on a Drude interpretation of the dielectric function that takes into account contributions of intraband and interband transitions as well as atomic polarizability. The results provide valuable benchmarks for assessing the extended Ziman formula for electrical resistivity and an accompanying average atom model.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Equilibration dynamics and conductivity of warm dense hydrogen
    Zastrau, U.
    Sperling, P.
    Becker, A.
    Bornath, T.
    Bredow, R.
    Doeppner, T.
    Dziarzhytski, S.
    Fennel, T.
    Fletcher, L. B.
    Forster, E.
    Fortmann, C.
    Glenzer, S. H.
    Goede, S.
    Gregori, G.
    Harmand, M.
    Hilbert, V.
    Holst, B.
    Laarmann, T.
    Lee, H. J.
    Ma, T.
    Mithen, J. P.
    Mitzner, R.
    Murphy, C. D.
    Nakatsutsumi, M.
    Neumayer, P.
    Przystawik, A.
    Roling, S.
    Schulz, M.
    Siemer, B.
    Skruszewicz, S.
    Tiggesbaeumker, J.
    Toleikis, S.
    Tschentscher, T.
    White, T.
    Woestmann, M.
    Zacharias, H.
    Redmer, R.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [42] Generalized Thermoelasticity of Gold Nano-Beam Material in Context of Two-Temperature
    Ismail, Mahmoud A.
    Khamis, Alaa K.
    Youssef, Hamdy M.
    MATERIALS FOCUS, 2018, 7 (06) : 895 - 900
  • [43] Investigation of Ion-Acoustic Solitons in Magnetosphere and Tokamak Warm Plasma with Two-Temperature Electrons
    N. Dashtban
    S. M. Motevalli
    T. Mohsenpour
    Plasma Physics Reports, 2018, 44 : 854 - 860
  • [44] Investigation of Ion-Acoustic Solitons in Magnetosphere and Tokamak Warm Plasma with Two-Temperature Electrons
    Dashtban, N.
    Motevalli, S. M.
    Mohsenpour, T.
    PLASMA PHYSICS REPORTS, 2018, 44 (09) : 854 - 860
  • [45] Relaxation of two-temperature plasma
    Phys Rev E., 2 (2081):
  • [46] A two-temperature model for LBVs
    Guo, JH
    Li, Y
    Shan, HG
    CORONAL AND STELLAR MASS EJECTIONS, 2005, (226): : 506 - 510
  • [47] Entanglement fidelity ratio for elastic collisions in non-ideal two-temperature dense plasma
    Mogaddam, Ramin Roozehdar
    Javan, Nasser Sepehri
    Javidan, Kurosh
    Mohammadzadeh, Hosein
    PHYSICA SCRIPTA, 2020, 95 (03)
  • [48] Temperature relaxation and generalized Coulomb logarithm in two-temperature dense plasmas relevant to inertial confinement fusion implosions
    Lin, Chengliang
    He, Bin
    Wu, Yong
    Zou, Shiyang
    Wang, Jianguo
    NUCLEAR FUSION, 2023, 63 (10)
  • [49] Relaxation of two-temperature plasma
    Bobylev, AV
    Potapenko, IF
    Sakanaka, PH
    PHYSICAL REVIEW E, 1997, 56 (02): : 2081 - 2093
  • [50] Two-temperature chemical equilibrium modeling of nitrogen DC plasma torch with cascaded anode
    Chen, Chao
    Liu, Dongping
    Ni, Weiyuan
    PHYSICA SCRIPTA, 2025, 100 (04)