dc conductivity of two-temperature warm dense gold

被引:25
|
作者
Ng, A. [1 ]
Sterne, P. [2 ]
Hansen, S. [3 ]
Recoules, V. [4 ]
Chen, Z. [5 ]
Tsui, Y. Y. [5 ]
Wilson, B. [2 ]
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Sandia Natl Labs, Albuquerque, NM 87123 USA
[4] CEA, DAM, DIF, F-91297 Arpajon, France
[5] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
STRONGLY COUPLED PLASMA; ELECTRICAL-RESISTIVITY MEASUREMENTS; OPTICAL-PROPERTIES; NOBLE-METALS; ALUMINUM; THERMALIZATION; CONSTANTS; SYSTEMS; COPPER; AU;
D O I
10.1103/PhysRevE.94.033213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Using recently obtained ac conductivity data we have derived dc conductivity together with free electron density and electron momentum relaxation time in two-temperature warm dense gold with energy density up to 4.1 MJ/kg (0.8 x 10(11) J/m(3)). The derivation is based on a Drude interpretation of the dielectric function that takes into account contributions of intraband and interband transitions as well as atomic polarizability. The results provide valuable benchmarks for assessing the extended Ziman formula for electrical resistivity and an accompanying average atom model.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Energy transfer and potential energy contributions in dense two-temperature plasmas
    Gericke, D. O.
    Bornath, Th
    Schlanges, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (17): : 4739 - 4742
  • [32] DC electrical conductivity measurements of warm dense matter using ultrafast THz radiation
    Ofori-Okai, B. K.
    Descamps, A.
    McBride, E. E.
    Mo, M. Z.
    Weinmann, A.
    Seipp, L. E.
    Ali, S. J.
    Chen, Z.
    Fletcher, L. B.
    Glenzer, S. H.
    PHYSICS OF PLASMAS, 2024, 31 (04)
  • [33] Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces
    Kang, Dongdong
    Luo, Kai
    Runge, Keith
    Trickey, S. B.
    MATTER AND RADIATION AT EXTREMES, 2020, 5 (06)
  • [34] Electrical conductivity of warm dense tungsten
    Fu, Zhijian
    Jia, Lijun
    Sun, Xiaowei
    Chen, Qifeng
    HIGH ENERGY DENSITY PHYSICS, 2013, 9 (04) : 781 - 786
  • [35] Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces
    Dongdong Kang
    Kai Luo
    Keith Runge
    SBTrickey
    Matter and Radiation at Extremes, 2020, 5 (06) : 53 - 64
  • [36] Dielectric function of warm dense gold
    Ping, Y.
    Hanson, D.
    Koslow, I.
    Ogitsu, T.
    Prendergast, D.
    Schwegler, E.
    Collins, G.
    Ng, A.
    PHYSICS OF PLASMAS, 2008, 15 (05)
  • [37] Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma
    Ramazanov, T. S.
    Moldabekov, Zh A.
    Gabdullin, M. T.
    PHYSICAL REVIEW E, 2015, 92 (02)
  • [38] Electrical resistivity and thermal conductivity of liquid aluminum in the two-temperature state
    Petrov, Yu V.
    Inogamov, N. A.
    Mokshin, A. V.
    Galimzyanov, B. N.
    XXXII INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2017), 2018, 946
  • [39] Influence of the two-temperature effect on ionization potential depression in hot dense plasma
    Luo, Qingbo
    Liang, Xin
    Lin, Chengliang
    Zhang, Xinlian
    Liu, Jianpeng
    Gao, Cheng
    Hou, Yong
    Yuan, Jianmin
    PHYSICAL REVIEW E, 2025, 111 (03)
  • [40] Two-Temperature Warm Dense Matter Produced by Ultrashort Extreme Vacuum Ultraviolet-Free Electron Laser (EUV-FEL) Pulse
    Inogamov, N. A.
    Faenov, A. Ya.
    Zhakhovsky, V. V.
    Pikuz, T. A.
    Skobelev, I. Yu.
    Petrov, Yu. V.
    Khokhlov, V. A.
    Shepelev, V. V.
    Anisimov, S. I.
    Fortov, V. E.
    Fukuda, Y.
    Kando, M.
    Kawachi, T.
    Nagasono, M.
    Ohashi, H.
    Yabashi, M.
    Tono, K.
    Senda, Y.
    Togashi, T.
    Ishikawa, T.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2011, 51 (05) : 419 - 426