Strongly sequentially separable function spaces, via selection principles

被引:3
|
作者
Osipov, Alexander, V [1 ]
Szewczak, Piotr [2 ]
Tsaban, Boaz [3 ]
机构
[1] Ural Fed Univ, Ural State Univ Econ, Krasovskii Inst Math & Mech, Ekaterinburg 620219, Russia
[2] Cardinal Stefan Wyszynski Univ Warsaw, Fac Math & Nat Sci, Inst Math, Coll Sci, Warsaw, Poland
[3] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
关键词
Strong sequential separability; Function spaces; Selection principles; Gerlits-Nagy; gamma-Property; Borel function; ((Omega)(Gamma)); ((Omega)(Bor)(Gamma)); gamma-Set; C-Space; COMBINATORICS; SETS;
D O I
10.1016/j.topol.2019.106942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A separable space is strongly sequentially separable if, for each countable dense set, every point in the space is a limit of a sequence from the dense set. We consider this and related properties, for the spaces of continuous and Borel real-valued functions on Tychonoff spaces, with the topology of pointwise convergence. Our results solve a problem stated by Gartside, Lo, and Marsh. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条