Strongly sequentially separable function spaces, via selection principles

被引:3
|
作者
Osipov, Alexander, V [1 ]
Szewczak, Piotr [2 ]
Tsaban, Boaz [3 ]
机构
[1] Ural Fed Univ, Ural State Univ Econ, Krasovskii Inst Math & Mech, Ekaterinburg 620219, Russia
[2] Cardinal Stefan Wyszynski Univ Warsaw, Fac Math & Nat Sci, Inst Math, Coll Sci, Warsaw, Poland
[3] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
关键词
Strong sequential separability; Function spaces; Selection principles; Gerlits-Nagy; gamma-Property; Borel function; ((Omega)(Gamma)); ((Omega)(Bor)(Gamma)); gamma-Set; C-Space; COMBINATORICS; SETS;
D O I
10.1016/j.topol.2019.106942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A separable space is strongly sequentially separable if, for each countable dense set, every point in the space is a limit of a sequence from the dense set. We consider this and related properties, for the spaces of continuous and Borel real-valued functions on Tychonoff spaces, with the topology of pointwise convergence. Our results solve a problem stated by Gartside, Lo, and Marsh. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Selection principles and covering properties in bitopological spaces
    Khan, Moiz Ud Din
    Sabah, Amani
    APPLIED GENERAL TOPOLOGY, 2020, 21 (01): : 159 - 169
  • [22] Variations of Star Selection Principles on Small Spaces
    Casas-de la Rosa, Javier
    Garcia-Balan, Sergio A.
    FILOMAT, 2022, 36 (14) : 4903 - 4917
  • [23] ON THE STRONGLY EXTREME-POINTS OF CONVEX-BODIES IN SEPARABLE BANACH-SPACES
    GODUN, BV
    LIN, BL
    TROYANSKI, SL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (03) : 673 - 675
  • [24] STRONGLY OPERATOR-DECOMPOSABLE PROBABILITY-MEASURES ON SEPARABLE BANACH-SPACES
    SIEBERT, E
    MATHEMATISCHE NACHRICHTEN, 1991, 154 : 315 - 326
  • [25] Separable quotients for less-than-barrelled function spaces
    Kakol, Jerzy
    Saxon, Stephen A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) : 1102 - 1105
  • [26] Separable subspaces of affine function spaces on convex compact sets
    Moors, Warren B.
    Reznichenko, Evgenii A.
    TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (12) : 1306 - 1322
  • [27] Selection principles in the context of soft sets: Menger spaces
    Ljubiša D. R. Kočinac
    Tareq M. Al-shami
    Vildan Çetkin
    Soft Computing, 2021, 25 : 12693 - 12702
  • [28] D-SPACES, TOPOLOGICAL GAMES, AND SELECTION PRINCIPLES
    Aurichi, Leandro F.
    TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 : 107 - 122
  • [29] Selection principles in the context of soft sets: Menger spaces
    Kocinac, Ljubisa D. R.
    Al-shami, Tareq M.
    Cetkin, Vildan
    SOFT COMPUTING, 2021, 25 (20) : 12693 - 12702
  • [30] DIRICHLET SPACES - PRINCIPLES, GREEN-FUNCTION
    ANCONA, A
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1975, 54 (01): : 75 - 124