On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach

被引:8
|
作者
Andrade, Enide [1 ]
Cardoso, Domingos M. [1 ]
Pasten, Germain [2 ]
Rojo, Oscar [2 ]
机构
[1] Univ Aveiro, CIDMA, Dept Matemat, P-3800 Aveiro, Portugal
[2] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
Spectral graph theory; Laplacian spectrum of a graph; Sign less Laplacian spectrum of a graph;
D O I
10.1016/j.laa.2015.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(G) and q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m(L)+/-((G)) (1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that m(L) +/-((G))(1) is bounded below by p(G) - q(G). Let r(G) be the number of internal vertices of G. If r(G) = q(G), following a unified approach we prove that m(L) +/- ((G)) (1) = p(G) - q(G). If r(G) > q(G) then we determine the equality m(L) +/- ((G)) (1) = p(G) - q(G)-m(N) +/- (1), where m(N) +/- (1) denotes the multiplicity of 1 as eigenvalue of a matrix N-+/-. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are nonquasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 50 条
  • [1] Spectra, signless Laplacian and Laplacian spectra of complementary prisms of graphs
    Cardoso, Domingos M.
    Carvalho, Paula
    de Freitas, Maria Aguieiras A.
    Vinagre, Cybele T. M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 544 : 325 - 338
  • [2] SPECTRA OF CLOSENESS LAPLACIAN AND CLOSENESS SIGNLESS LAPLACIAN OF GRAPHS
    Zheng, Lu
    Zhou, Bo
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (05) : 3525 - 3543
  • [3] GRAPHS DETERMINED BY THEIR (SIGNLESS) LAPLACIAN SPECTRA
    Liu, Muhuo
    Liu, Bolian
    Wei, Fuyi
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 : 112 - 124
  • [4] On (distance) signless Laplacian spectra of graphs
    B. R. Rakshith
    Kinkar Chandra Das
    M. A. Sriraj
    Journal of Applied Mathematics and Computing, 2021, 67 : 23 - 40
  • [5] Graphs determined by signless Laplacian spectra
    Abdian, Ali Zeydi
    Behmaram, Afshin
    Fath-Tabar, Gholam Hossein
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 45 - 50
  • [6] The spectra and the signless Laplacian spectra of graphs with pockets
    Cui, Shu-Yu
    Tian, Gui-Xian
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 363 - 371
  • [7] ON THE SUM OF SIGNLESS LAPLACIAN SPECTRA OF GRAPHS
    Pirzada, S.
    Ganie, H. A.
    Alghamdi, A. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (02) : 407 - 417
  • [8] On (distance) signless Laplacian spectra of graphs
    Rakshith, B. R.
    Das, Kinkar Chandra
    Sriraj, M. A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2021, 67 (1-2) : 23 - 40
  • [9] Laplacian and signless laplacian spectra and energies of multi-step wheels
    Chu, Zheng-Qing
    Munir, Mobeen
    Yousaf, Amina
    Qureshi, Muhammad Imran
    Liu, Jia-Bao
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3649 - 3659
  • [10] ON THE SIGNLESS LAPLACIAN AND NORMALIZED SIGNLESS LAPLACIAN SPREADS OF GRAPHS
    Milovanovic, Emina
    Altindag, Serife Burcu Bozkurt
    Matejic, Marjan
    Milovanovic, Igor
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (02) : 499 - 511