On the Faria's inequality for the Laplacian and signless Laplacian spectra: A unified approach

被引:8
|
作者
Andrade, Enide [1 ]
Cardoso, Domingos M. [1 ]
Pasten, Germain [2 ]
Rojo, Oscar [2 ]
机构
[1] Univ Aveiro, CIDMA, Dept Matemat, P-3800 Aveiro, Portugal
[2] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
关键词
Spectral graph theory; Laplacian spectrum of a graph; Sign less Laplacian spectrum of a graph;
D O I
10.1016/j.laa.2015.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(G) and q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m(L)+/-((G)) (1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that m(L) +/-((G))(1) is bounded below by p(G) - q(G). Let r(G) be the number of internal vertices of G. If r(G) = q(G), following a unified approach we prove that m(L) +/- ((G)) (1) = p(G) - q(G). If r(G) > q(G) then we determine the equality m(L) +/- ((G)) (1) = p(G) - q(G)-m(N) +/- (1), where m(N) +/- (1) denotes the multiplicity of 1 as eigenvalue of a matrix N-+/-. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are nonquasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 96
页数:16
相关论文
共 50 条
  • [41] On the Seidel Laplacian and Seidel Signless Laplacian Polynomials of Graphs
    Ramane, Harishchandra S.
    Ashoka, K.
    Patil, Daneshwari
    Parvathalu, B.
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 155 - 168
  • [42] On some forests determined by their Laplacian or signless Laplacian spectrum
    Simic, Slobodan K.
    Stanic, Zoran
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (01) : 171 - 178
  • [43] Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph
    Kolotilina L.Y.
    Journal of Mathematical Sciences, 2012, 182 (6) : 803 - 813
  • [44] Graphs with maximum Laplacian and signless Laplacian Estrada index
    Gutman, Ivan
    Medina C, Luis
    Pizarro, Pamela
    Robbiano, Maria
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2664 - 2671
  • [45] H+-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS
    Qi, Liqun
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2014, 12 (06) : 1045 - 1064
  • [46] On sum of powers of the Laplacian and signless Laplacian eigenvalues of graphs
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jacobus H.
    Oboudi, Mohammad Reza
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [47] Relationship between Laplacian and signless Laplacian coefficients of polythiophene
    Arabzadeh, M.
    Fath-Tabar, G. H.
    Rasouli, H.
    Tehranian, A.
    ADVANCED STUDIES-EURO-TBILISI MATHEMATICAL JOURNAL, 2023, 16 : 89 - 95
  • [48] On the Laplacian and signless Laplacian polynomials of graphs with semiregular automorphisms
    Arezoomand, Majid
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2020, 52 (01) : 21 - 32
  • [49] On distance Laplacian and distance signless Laplacian eigenvalues of graphs
    Das, Kinkar Ch.
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (11): : 2307 - 2324
  • [50] A relation between the Laplacian and signless Laplacian eigenvalues of a graph
    Akbari, Saieed
    Ghorbani, Ebrahim
    Koolen, Jack H.
    Oboudi, Mohammad Reza
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) : 459 - 464