On the shape of the Eshelby inclusions

被引:59
|
作者
Markenscoff, X [1 ]
机构
[1] Univ Calif San Diego, Dept Appl Mech & Engn Sci, La Jolla, CA 92093 USA
关键词
inclusions; eigenstress; inverse problems;
D O I
10.1023/A:1007474108433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is shown, based on properties of analytic functions, that for inclusions of constant eigenstrain and eigenstress that the shape of the inclusion is restricted and any part of a plane (i.e. polyhedral inclusion) is prohibited.
引用
收藏
页码:163 / 166
页数:4
相关论文
共 50 条
  • [31] ESHELBY TENSORS FOR ONE-DIMENSIONAL PIEZOELECTRIC QUASICRYSTAL MATERIALS WITH ELLIPSOIDAL INCLUSIONS
    Hu, Zhiming
    Zhang, Liangliang
    Gao, Yang
    PROCEEDINGS OF THE 2020 15TH SYMPOSIUM ON PIEZOELECTRCITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS (SPAWDA), 2021, : 474 - 479
  • [32] An Eshelby inclusion of arbitrary shape in a nonlinearly coupled thermoelectric material
    Xu Wang
    Peter Schiavone
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [33] Eshelby problem of polygonal inclusions in anisotropic piezoelectric full- and half-planes
    Pan, E
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (03) : 567 - 589
  • [34] Mapping between atomistic simulations and Eshelby inclusions in the shear deformation of an amorphous silicon model
    Albaret, T.
    Tanguy, A.
    Boioli, F.
    Rodney, D.
    PHYSICAL REVIEW E, 2016, 93 (05)
  • [35] Analytical expression of the Eshelby tensor for arbitrary polygonal inclusions in two-dimensional elasticity
    Trotta, S.
    Marmo, F.
    Rosati, L.
    COMPOSITES PART B-ENGINEERING, 2016, 106 : 48 - 58
  • [36] Exact solution of Eshelby-Christensen problem in gradient elasticity for composites with spherical inclusions
    Lurie, Sergey
    Volkov-Bogorodskii, Dmitrii
    Tuchkova, Natalia
    ACTA MECHANICA, 2016, 227 (01) : 127 - 138
  • [37] The quasi Eshelby property for rotational symmetrical inclusions of uniform eigencurvatures within an infinite plate
    Xu, BX
    Wang, MZ
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2061): : 2899 - 2910
  • [38] On the Displacement of a Two-Dimensional Eshelby Inclusion of Elliptic Cylindrical Shape
    Jin, Xiaoqing
    Zhang, Xiangning
    Li, Pu
    Xu, Zheng
    Hu, Yumei
    Keer, Leon M.
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2017, 84 (07):
  • [39] ANALYTICAL SOLUTION FOR THE STRESS FIELD OF ESHELBY'S INCLUSION OF POLYGONAL SHAPE
    Jin, Xiaoqing
    Keer, Leon M.
    Wang, Qian
    PROCEEDINGS OF THE ASME/STLE INTERNATIONAL JOINT TRIBOLOGY CONFERENCE - 2009, 2010, : 487 - 489
  • [40] Comments on “Eshelby inclusion of arbitrary shape in an anisotropic plane or half–plane”
    P. A. A. Laura
    D. V. Bambill
    Acta Mechanica, 2003, 164 : 113 - 114