On the shape of the Eshelby inclusions

被引:59
|
作者
Markenscoff, X [1 ]
机构
[1] Univ Calif San Diego, Dept Appl Mech & Engn Sci, La Jolla, CA 92093 USA
关键词
inclusions; eigenstress; inverse problems;
D O I
10.1023/A:1007474108433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is shown, based on properties of analytic functions, that for inclusions of constant eigenstrain and eigenstress that the shape of the inclusion is restricted and any part of a plane (i.e. polyhedral inclusion) is prohibited.
引用
收藏
页码:163 / 166
页数:4
相关论文
共 50 条
  • [21] Eshelby problem in continuous shape transition of helical inclusion
    Muraishi, Shinji
    Taya, Minoru
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2020, 199 : 36 - 42
  • [22] TWO-DIMENSIONAL PIEZOELECTRIC QUASICRYSTAL ESHELBY TENSORS FOR AN ELLIPTICAL INCLUSIONS
    Fu, Xiaoyu
    Zhang, Jinming
    Zhang, Liangliang
    Gao, Yang
    2022 16TH SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES, AND DEVICE APPLICATIONS, SPAWDA, 2022, : 751 - 755
  • [23] Eshelby's solution for ellipsoidal inhomogeneous inclusions with applications to compaction bands
    Meng, Chunfang
    Pollard, David D.
    JOURNAL OF STRUCTURAL GEOLOGY, 2014, 67 : 1 - 19
  • [24] An Eshelby inclusion of parabolic shape in an anisotropic elastic plane
    Yang, Ping
    Wang, Xu
    Schiavone, Peter
    MECHANICS OF MATERIALS, 2021, 155
  • [25] Exact solution of Eshelby–Christensen problem in gradient elasticity for composites with spherical inclusions
    Sergey Lurie
    Dmitrii Volkov-Bogorodskii
    Natalia Tuchkova
    Acta Mechanica, 2016, 227 : 127 - 138
  • [26] An Eshelby inclusion of arbitrary shape in a nonlinearly coupled thermoelectric material
    Wang, Xu
    Schiavone, Peter
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [27] Effective anisotropic stiffness of inclusions with debonded interface for Eshelby-based models
    Jain, Atul
    Abdin, Yasmine
    Van Paepegem, Wim
    Verpoest, Ignaas
    Lomov, Stepan V.
    COMPOSITE STRUCTURES, 2015, 131 : 692 - 706
  • [28] On numerical evaluation of Eshelby tensor for superspherical and superellipsoidal inclusions in isotropic elastic material
    Yanase, Keiji
    Chatterjee, Hirak
    Ghosh, Sujit Kumar
    COMPOSITES PART B-ENGINEERING, 2020, 192
  • [29] On self-similarly expanding Eshelby inclusions: Spherical inclusion with dilatational eigenstrain
    Ni, Luqun
    Markenscoff, Xanthippi
    MECHANICS OF MATERIALS, 2015, 90 : 30 - 36
  • [30] A coupled fictitious stress method and Eshelby inclusions as a meshless technique for inhomogeneity problems
    Kamal, M. A.
    Rashed, Youssef F.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 134 : 117 - 138