The bilayer quantum Hall system at a total filling of nu(T) = 1 has long resisted explanation in terms of a true counterflow superfluid, though many experimental features can be seen to be "almost" that of a superfluid. It is widely believed that quenched disorder is the root cause of this puzzle. Here we model the nonperturbative effects of disorder by investigating the nu = 1 bilayer in a strong periodic potential. Our model assumes that fermions are gapped and real spins are fully polarized, and concentrates on the pseudospin variable (the layer index), with the external potential coupling to the topological (Pontryagin) density of the pseudospin. We find that as the potential strength increases, there are ground-state transitions in which the topological content of the pseudospin configuration changes. These transitions are generically weakly first order with a new quadratically dispersing mode (in addition to the linearly dispersing Goldstone mode) sometimes becoming nearly gapless near the transition. We show that this leads to strong suppressions of both the Kosterlitz-Thouless transition temperature and the interlayer tunneling strength, which we treat perturbatively. We discuss how these results might extend to the case of true disorder.