Bilayer quantum Hall ferromagnet in a periodic potential

被引:7
|
作者
Sun, Jianmin [1 ]
Murthy, Ganpathy [2 ]
Fertig, H. A. [1 ]
Bray-Ali, Noah [2 ]
机构
[1] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[2] Univ Kentucky, Dept Phys & Astron, Lexington, KY 40506 USA
来源
PHYSICAL REVIEW B | 2010年 / 81卷 / 19期
基金
美国国家科学基金会;
关键词
SPONTANEOUS INTERLAYER COHERENCE; BOSE-EINSTEIN CONDENSATION; STRONG MAGNETIC-FIELD; ISING SPIN-GLASS; PHASE-TRANSITIONS; COMPOSITE-FERMION; CRITICAL-POINTS; DIMENSIONS; 2-DIMENSIONAL SYSTEMS; CONTINUOUS SYMMETRY;
D O I
10.1103/PhysRevB.81.195314
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The bilayer quantum Hall system at a total filling of nu(T) = 1 has long resisted explanation in terms of a true counterflow superfluid, though many experimental features can be seen to be "almost" that of a superfluid. It is widely believed that quenched disorder is the root cause of this puzzle. Here we model the nonperturbative effects of disorder by investigating the nu = 1 bilayer in a strong periodic potential. Our model assumes that fermions are gapped and real spins are fully polarized, and concentrates on the pseudospin variable (the layer index), with the external potential coupling to the topological (Pontryagin) density of the pseudospin. We find that as the potential strength increases, there are ground-state transitions in which the topological content of the pseudospin configuration changes. These transitions are generically weakly first order with a new quadratically dispersing mode (in addition to the linearly dispersing Goldstone mode) sometimes becoming nearly gapless near the transition. We show that this leads to strong suppressions of both the Kosterlitz-Thouless transition temperature and the interlayer tunneling strength, which we treat perturbatively. We discuss how these results might extend to the case of true disorder.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Floquet energies and Quantum Hall effect in a periodic potential
    Ferrari, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (11): : 1105 - 1123
  • [22] Quantum Hall effect of interacting electrons in a periodic potential
    Pfannkuche, D
    MacDonald, AH
    PHYSICAL REVIEW B, 1997, 56 (12) : R7100 - R7103
  • [23] FRACTIONAL QUANTUM HALL-EFFECT IN A PERIODIC POTENTIAL
    KOL, A
    READ, N
    PHYSICAL REVIEW B, 1993, 48 (12): : 8890 - 8898
  • [24] Metastable phase in the quantum Hall ferromagnet
    Piazza, V
    Pellegrini, V
    Beltram, F
    Wegscheider, W
    SOLID STATE COMMUNICATIONS, 2003, 127 (02) : 163 - 168
  • [25] Quantum Hall ferromagnet in a parabolic well
    Gusev, GM
    Quivy, AA
    Lamas, TE
    Leite, JR
    Estibals, O
    Portal, JC
    PHYSICAL REVIEW B, 2003, 67 (15)
  • [26] Ultrafast spectroscopy of the quantum Hall ferromagnet
    Su, B.
    Schroeter, P.
    Heitmann, D.
    Perakis, I. E.
    Wegscheider, W.
    Schueller, C.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2): : 381 - 384
  • [27] INFLUENCE OF A PERIODIC POTENTIAL ON THE INTEGER QUANTUM HALL-EFFECT
    HUCKESTEIN, B
    BHATT, RN
    SURFACE SCIENCE, 1994, 305 (1-3) : 438 - 442
  • [28] Weak localization and integer quantum Hall effect in a periodic potential
    Schwiete, G
    Taras-Semchuk, D
    Efetov, KB
    PHYSICAL REVIEW B, 2003, 67 (24)
  • [29] Quantum theory of bilayer quantum Hall smectics
    Papa, E
    Schliemann, J
    MacDonald, AH
    Fisher, MPA
    PHYSICAL REVIEW B, 2003, 67 (11)
  • [30] Anomalous Hall resistance in bilayer quantum Hall systems
    Ezawa, Z. F.
    Suzuki, S.
    Tsitsishvili, G.
    PHYSICAL REVIEW B, 2007, 76 (04)