Phenotype Prediction by Integrative Network Analysis of SNP and Gene Expression Microarrays

被引:0
|
作者
Chang, Hsun-Hsien [1 ]
McGeachie, Michael [2 ]
机构
[1] Harvard Univ, Sch Med, Harvard MIT Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
REGULATORY NETWORKS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A long-term goal of biomedical research is to decipher how genetic processes influence disease formation. Ubiquitous and advancing microarray technology can measure millions of DNA structural variants (single-nucleotide polymorphisms, or SNPs) and thousands of gene transcripts (RNA expression microarrays) in cells. Both of these information modalities can be brought to bear on disease etiology. This paper develops a Bayesian network-based approach to integrate SNP and expression microarray data. The network models SNP-gene interactions using a phenotypecentric network. Inferring the network consists of two steps: variable selection and network learning. The learned network illustrates how functionally dependent SNPs and genes influence each other, and also serves as a predictor of the phenotype. The application of the proposed method to a pediatric acute lymphoblastic leukemia dataset demonstrates the feasibility of our approach and its impact on biological investigation and clinical practice.
引用
收藏
页码:6849 / 6852
页数:4
相关论文
共 50 条
  • [41] Gene expression profile analysis by DNA microarrays - Promise and pitfalls
    King, HC
    Sinha, AA
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2001, 286 (18): : 2280 - 2288
  • [42] Gene expression profile in laryngeal cancer by oligonucleotide microarrays analysis
    Markowski, J.
    Gierek, T.
    Oczko-Wojciechowska, M.
    Kowalska, M.
    Paluch, J.
    Jarzab, M.
    Wygoda, Z.
    Jarzab, B.
    Wardas, P.
    Lange, D.
    ORAL ONCOLOGY, 2007, : 170 - 170
  • [43] Meta-analysis of gene expression microarrays with missing replicates
    Fan Shi
    Gad Abraham
    Christopher Leckie
    Izhak Haviv
    Adam Kowalczyk
    BMC Bioinformatics, 12
  • [44] Meta-analysis of gene expression microarrays with missing replicates
    Shi, Fan
    Abraham, Gad
    Leckie, Christopher
    Haviv, Izhak
    Kowalczyk, Adam
    BMC BIOINFORMATICS, 2011, 12
  • [45] Robust preprocessing of gene expression microarrays for independent component analysis
    Vilda, PG
    Díaz, F
    Martínez, R
    Malutan, R
    Rodellar, V
    Puntonet, CG
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 714 - 721
  • [46] Integrative Analysis of DNA Methylation and Gene Expression in Monocytes from Primary Antiphospholipid Syndrome Patients Identifies a Gene Expression Signature Associated with Their Atherothrombotic Phenotype
    Perez-Sanchez, Carlos
    Angeles Aguirre, M.
    Maria Patino-Trives, Alejandra
    Perez-Sanchez, Laura
    Luque-Tevar, Maria
    Arias de la Rosa, Ivan
    Abalos-Aguilera, Maria-Carmen
    Segui, Pedro
    Rodriguez-Ubreva, Javier
    Ballestar, Esteban
    Barbarroja, Nuria
    Collantes-Estevez, Eduardo
    Lopez-Pedrera, Chary
    ARTHRITIS & RHEUMATOLOGY, 2020, 72
  • [47] Phenotype-Gene Association Analysis and Prediction Based on Double-Layer Coupled Network
    Yu Y.
    Gu J.
    Zhao N.
    Luo Y.-J.
    Kan S.-L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2020, 49 (03): : 438 - 444
  • [48] A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data
    Tianyu Kang
    Wei Ding
    Luoyan Zhang
    Daniel Ziemek
    Kourosh Zarringhalam
    BMC Bioinformatics, 18
  • [49] A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data
    Kang, Tianyu
    Ding, Wei
    Zhang, Luoyan
    Ziemek, Daniel
    Zarringhalam, Kourosh
    BMC BIOINFORMATICS, 2017, 18
  • [50] Integrative Gene Expression and Metabolic Analysis Tool IgemRNA
    Grausa, Kristina
    Mozga, Ivars
    Pleiko, Karlis
    Pentjuss, Agris
    BIOMOLECULES, 2022, 12 (04)