Phenotype Prediction by Integrative Network Analysis of SNP and Gene Expression Microarrays

被引:0
|
作者
Chang, Hsun-Hsien [1 ]
McGeachie, Michael [2 ]
机构
[1] Harvard Univ, Sch Med, Harvard MIT Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
REGULATORY NETWORKS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A long-term goal of biomedical research is to decipher how genetic processes influence disease formation. Ubiquitous and advancing microarray technology can measure millions of DNA structural variants (single-nucleotide polymorphisms, or SNPs) and thousands of gene transcripts (RNA expression microarrays) in cells. Both of these information modalities can be brought to bear on disease etiology. This paper develops a Bayesian network-based approach to integrate SNP and expression microarray data. The network models SNP-gene interactions using a phenotypecentric network. Inferring the network consists of two steps: variable selection and network learning. The learned network illustrates how functionally dependent SNPs and genes influence each other, and also serves as a predictor of the phenotype. The application of the proposed method to a pediatric acute lymphoblastic leukemia dataset demonstrates the feasibility of our approach and its impact on biological investigation and clinical practice.
引用
收藏
页码:6849 / 6852
页数:4
相关论文
共 50 条
  • [21] Xylella fastidiosa gene expression analysis by DNA microarrays
    Travensolo, Regiane F.
    Carareto-Alves, Lucia M.
    Costa, Maria V. C. G.
    Lopes, Tiago J. S.
    Carrilho, Emanuel
    Lemos, Eliana G. M.
    GENETICS AND MOLECULAR BIOLOGY, 2009, 32 (02) : 340 - 353
  • [22] Gene expression analysis of cytokines by microarrays in Lyme neuroborreliosis
    Pachner, AR
    Barocas, A
    Bartlett, M
    Cadavid, D
    Collins, RML
    Zhang, WF
    NEUROLOGY, 2000, 54 (07) : A288 - A289
  • [23] Analysis of gene expression on anodic porous alumina microarrays
    Nicolini, Claudio
    Singh, Manju
    Spera, Rosanna
    Felli, Lamberto
    BIOENGINEERED, 2013, 4 (05) : 332 - 337
  • [24] Microarrays: the use of oligonucleotides and cDNA for the analysis of gene expression
    Barrett, JC
    Kawasaki, ES
    DRUG DISCOVERY TODAY, 2003, 8 (03) : 134 - 141
  • [25] GenePicker:: replicate analysis of Affymetrix gene expression microarrays
    Finocchiaro, G
    Parise, P
    Minardi, SP
    Alcalay, M
    Müller, H
    BIOINFORMATICS, 2004, 20 (18) : 3670 - 3672
  • [26] Spotted cotton oligonucleotide microarrays for gene expression analysis
    Joshua A Udall
    Lex E Flagel
    Foo Cheung
    Andrew W Woodward
    Ran Hovav
    Ryan A Rapp
    Jordan M Swanson
    Jinsuk J Lee
    Alan R Gingle
    Dan Nettleton
    Christopher D Town
    Z Jeffrey Chen
    Jonathan F Wendel
    BMC Genomics, 8
  • [27] GraphGONet: a self-explaining neural network encapsulating the Gene Ontology graph for phenotype prediction on gene expression
    Bourgeais, Victoria
    Zehraoui, Farida
    Hanczar, Blaise
    BIOINFORMATICS, 2022, 38 (09) : 2504 - 2511
  • [28] Integrative prediction of gene expression with chromatin accessibility and conformation data
    Florian Schmidt
    Fabian Kern
    Marcel H. Schulz
    Epigenetics & Chromatin, 13
  • [29] Integrative prediction of gene expression with chromatin accessibility and conformation data
    Schmidt, Florian
    Kern, Fabian
    Schulz, Marcel H.
    EPIGENETICS & CHROMATIN, 2020, 13 (01)
  • [30] Gene expression, chips and microarrays
    Deng, SP
    Vatamaniuk, M
    Chiaccio, M
    Chen, HY
    Doliba, N
    Matschinsky, F
    Markmann, J
    DIABETES, 2004, 53 : A4 - A4