Phenotype Prediction by Integrative Network Analysis of SNP and Gene Expression Microarrays

被引:0
|
作者
Chang, Hsun-Hsien [1 ]
McGeachie, Michael [2 ]
机构
[1] Harvard Univ, Sch Med, Harvard MIT Div Hlth Sci & Technol, Childrens Hosp Informat Program, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Harvard Med Sch, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
REGULATORY NETWORKS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A long-term goal of biomedical research is to decipher how genetic processes influence disease formation. Ubiquitous and advancing microarray technology can measure millions of DNA structural variants (single-nucleotide polymorphisms, or SNPs) and thousands of gene transcripts (RNA expression microarrays) in cells. Both of these information modalities can be brought to bear on disease etiology. This paper develops a Bayesian network-based approach to integrate SNP and expression microarray data. The network models SNP-gene interactions using a phenotypecentric network. Inferring the network consists of two steps: variable selection and network learning. The learned network illustrates how functionally dependent SNPs and genes influence each other, and also serves as a predictor of the phenotype. The application of the proposed method to a pediatric acute lymphoblastic leukemia dataset demonstrates the feasibility of our approach and its impact on biological investigation and clinical practice.
引用
收藏
页码:6849 / 6852
页数:4
相关论文
共 50 条
  • [1] Genome analysis with gene expression microarrays
    Schena, M
    BIOESSAYS, 1996, 18 (05) : 427 - 431
  • [2] Optimal gene expression analysis by microarrays
    Miller, LD
    Long, PM
    Wong, L
    Mukherjee, S
    McShane, LM
    Liu, ET
    CANCER CELL, 2002, 2 (05) : 353 - 361
  • [3] Biological interpretation of deep neural network for phenotype prediction based on gene expression
    Blaise Hanczar
    Farida Zehraoui
    Tina Issa
    Mathieu Arles
    BMC Bioinformatics, 21
  • [4] Biological interpretation of deep neural network for phenotype prediction based on gene expression
    Hanczar, Blaise
    Zehraoui, Farida
    Issa, Tina
    Arles, Mathieu
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [5] Integrative expression network analysis of microRNA and gene isoforms in sacred lotus
    Zhang, Yue
    Rahmani, Razgar Seyed
    Yang, Xingyu
    Chen, Jinming
    Shi, Tao
    BMC GENOMICS, 2020, 21 (01) : 429
  • [6] Integrative expression network analysis of microRNA and gene isoforms in sacred lotus
    Yue Zhang
    Razgar Seyed Rahmani
    Xingyu Yang
    Jinming Chen
    Tao Shi
    BMC Genomics, 21
  • [7] Application of microarrays to the analysis of gene expression in cancer
    Macgregor, PF
    Squire, JA
    CLINICAL CHEMISTRY, 2002, 48 (08) : 1170 - 1177
  • [8] The application of DNA microarrays in gene expression analysis
    van Hal, NLW
    Vorst, O
    van Houwelingen, AMML
    Kok, EJ
    Peijnenburg, A
    Aharoni, A
    van Tunen, AJ
    Keijer, J
    JOURNAL OF BIOTECHNOLOGY, 2000, 78 (03) : 271 - 280
  • [9] The pros and cons of gene expression analysis by microarrays
    Groen, AK
    JOURNAL OF HEPATOLOGY, 2001, 35 (02) : 295 - 296
  • [10] An introduction to DNA microarrays for gene expression analysis
    Karakach, Tobias K.
    Flight, Robert M.
    Douglas, Susan E.
    Wentzell, Peter D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 104 (01) : 28 - 52