Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection

被引:250
|
作者
Chen, Hao [1 ]
Li, Youfu [1 ]
Su, Dan [1 ]
机构
[1] City Univ Hong Kong, Dept Mech Engn, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, Peoples R China
关键词
RGB-D; Convolutional neural networks; Multi-path; Saliency detection; DETECTION MODEL; VIDEO;
D O I
10.1016/j.patcog.2018.08.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Paired RGB and depth images are becoming popular multi-modal data adopted in computer vision tasks. Traditional methods based on Convolutional Neural Networks (CNNs) typically fuse RGB and depth by combining their deep representations in a late stage with only one path, which can be ambiguous and insufficient for fusing large amounts of cross-modal data. To address this issue, we propose a novel multi-scale multi-path fusion network with cross-modal interactions (MMCI), in which the traditional two-stream fusion architecture with single fusion path is advanced by diversifying the fusion path to a global reasoning one and another local capturing one and meanwhile introducing cross-modal interactions in multiple layers. Compared to traditional two-stream architectures, the MMCI net is able to supply more adaptive and flexible fusion flows, thus easing the optimization and enabling sufficient and efficient fusion. Concurrently, the MMCI net is equipped with multi-scale perception ability (i.e., simultaneously global and local contextual reasoning). We take RGB-D saliency detection as an example task. Extensive experiments on three benchmark datasets show the improvement of the proposed MMCI net over other state-of-the-art methods. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:376 / 385
页数:10
相关论文
共 50 条
  • [1] M3Net: Multi-scale Multi-path Multi-modal Fusion Network and Example Application to RGB-D Salient Object Detection
    Chen, Hao
    Li, You-Fu
    Su, Dan
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 4911 - 4916
  • [2] Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
    Wu, Jiajia
    Han, Guangliang
    Wang, Haining
    Yang, Hang
    Li, Qingqing
    Liu, Dongxu
    Ye, Fangjian
    Liu, Peixun
    IEEE ACCESS, 2021, 9 : 150608 - 150622
  • [3] Multi-scale Cross-Modal Transformer Network for RGB-D Object Detection
    Xiao, Zhibin
    Xie, Pengwei
    Wang, Guijin
    MULTIMEDIA MODELING (MMM 2022), PT I, 2022, 13141 : 352 - 363
  • [4] Feature Enhancement and Multi-scale Cross-Modal Attention for RGB-D Salient Object Detection
    Wan, Xin
    Yang, Gang
    Zhou, Boyi
    Liu, Chang
    Wang, Hangxu
    Wang, Yutao
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 409 - 420
  • [5] BMFNet: Bifurcated multi-modal fusion network for RGB-D salient object detection
    Sun, Chenwang
    Zhang, Qing
    Zhuang, Chenyu
    Zhang, Mingqian
    IMAGE AND VISION COMPUTING, 2024, 147
  • [6] MULTI-MODAL TRANSFORMER FOR RGB-D SALIENT OBJECT DETECTION
    Song, Peipei
    Zhang, Jing
    Koniusz, Piotr
    Barnes, Nick
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2466 - 2470
  • [7] M 2RNet: Multi-modal and multi-scale refined network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    PATTERN RECOGNITION, 2023, 135
  • [8] Multi-level cross-modal interaction network for RGB-D salient object detection
    Huang, Zhou
    Chen, Huai-Xin
    Zhou, Tao
    Yang, Yun-Zhi
    Liu, Bi-Yuan
    NEUROCOMPUTING, 2021, 452 : 200 - 211
  • [9] Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection
    Gao, Wei
    Liao, Guibiao
    Ma, Siwei
    Li, Ge
    Liang, Yongsheng
    Lin, Weisi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2091 - 2106
  • [10] Cross-modal and multi-level feature refinement network for RGB-D salient object detection
    Gao, Yue
    Dai, Meng
    Zhang, Qing
    VISUAL COMPUTER, 2023, 39 (09): : 3979 - 3994