BMFNet: Bifurcated multi-modal fusion network for RGB-D salient object detection

被引:0
|
作者
Sun, Chenwang [1 ]
Zhang, Qing [1 ]
Zhuang, Chenyu [1 ]
Zhang, Mingqian [2 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai 201418, Peoples R China
[2] Shanghai Inst Technol, Sch Mech Engn, Shanghai 201418, Peoples R China
基金
上海市自然科学基金;
关键词
RGB-D salient object detection; Cross-modal fusion; Multi-modal integration; Multi-level aggregation; IMAGE;
D O I
10.1016/j.imavis.2024.105048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although deep learning-based RGB-D salient object detection methods have achieved impressive results in the recent years, there are still some issues need to be addressed including multi-modal fusion and multi-level aggregation. In this paper, we propose a bifurcated multi-modal fusion network (BMFNet) to address these two issues cooperatively. First, we design a multi-modal feature interaction (MFI) module to fully capture the complementary information between the RGB and depth features by leveraging the channel attention and spatial attention. Second, unlike the widely used layer-by-layer progressive fusion, we adopt a bifurcated fusion strategy for all the multi-level unimodal and cross-modal features to effectively reduce the gaps between features at different levels. For the intra-group feature aggregation, a multi-modal feature fusion (MFF) module is designed to integrate the intra-group multi-modal features to produce a low-level/high-level saliency feature. For the inter-group aggregation, a multi-scale feature learning (MFL) module is introduced to exploit the contextual interactions between different scales to boost fusion performance. Experimental results on five public RGB-D datasets demonstrate the effectiveness and superiority of our proposed network. The code and prediction maps will be available at https://github.com/ZhangQing0329/BMFNet
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MULTI-MODAL TRANSFORMER FOR RGB-D SALIENT OBJECT DETECTION
    Song, Peipei
    Zhang, Jing
    Koniusz, Piotr
    Barnes, Nick
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2466 - 2470
  • [2] Unified Information Fusion Network for Multi-Modal RGB-D and RGB-T Salient Object Detection
    Gao, Wei
    Liao, Guibiao
    Ma, Siwei
    Li, Ge
    Liang, Yongsheng
    Lin, Weisi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2091 - 2106
  • [3] RGB-D Salient Object Detection Method Based on Multi-Modal Fusion and Contour Guidance
    Peng, Yanbin
    Feng, Mingkun
    Zheng, Zhijun
    IEEE ACCESS, 2023, 11 : 145217 - 145230
  • [4] Progressive Guided Fusion Network With Multi-Modal and Multi-Scale Attention for RGB-D Salient Object Detection
    Wu, Jiajia
    Han, Guangliang
    Wang, Haining
    Yang, Hang
    Li, Qingqing
    Liu, Dongxu
    Ye, Fangjian
    Liu, Peixun
    IEEE ACCESS, 2021, 9 : 150608 - 150622
  • [5] RGB-D Salient Object Detection Based on Multi-Modal Feature Interaction
    Gao, Yue
    Dai, Meng
    Zhang, Qing
    Computer Engineering and Applications, 2024, 60 (02) : 211 - 220
  • [6] Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection
    Chen, Hao
    Li, Youfu
    Su, Dan
    PATTERN RECOGNITION, 2019, 86 : 376 - 385
  • [7] Adaptive fusion network for RGB-D salient object detection
    Chen, Tianyou
    Xiao, Jin
    Hu, Xiaoguang
    Zhang, Guofeng
    Wang, Shaojie
    NEUROCOMPUTING, 2023, 522 : 152 - 164
  • [8] Bifurcation Fusion Network for RGB-D Salient Object Detection
    Zhao, Zhi-Hua
    Chen, Li
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2022, 31 (12)
  • [9] Multi-modal interactive attention and dual progressive decoding network for RGB-D/T salient object detection
    Liang, Yanhua
    Qin, Guihe
    Sun, Minghui
    Qin, Jun
    Yan, Jie
    Zhang, Zhonghan
    NEUROCOMPUTING, 2022, 490 : 132 - 145
  • [10] Bifurcated Backbone Strategy for RGB-D Salient Object Detection
    Zhai, Yingjie
    Fan, Deng-Ping
    Yang, Jufeng
    Borji, Ali
    Shao, Ling
    Han, Junwei
    Wang, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8727 - 8742